精英家教网 > 高中数学 > 题目详情
3.已知an=n2cos(nπ)-2nsin2($\frac{nπ}{2}$),则a1+a2+a3+…+100=(  )
A.-5050B.10100C.50D.100

分析 先求出分段函数f(n)的解析式,进一步给出数列的通项公式,再使用分组求和法,求解.

解答 解:∵an=n2cos(nπ)-2nsin2($\frac{nπ}{2}$),
∴${a}_{n}=\left\{\begin{array}{l}{-{n}^{2}-2n,n为奇数}\\{{n}^{2},n为偶数}\end{array}\right.$,
∴a1+a2+a3+…+100=22-12+42-32+62-52+…+1002-992-2(1+3+5+7+…+99)
=1+2+3+4+5+6+…+99+100-2(1+3+5+7+…+99)
=$\frac{100}{2}$(1+100)-2×$\frac{50}{2}(1+99)$
=5050-5000
=50.
故选:C.

点评 本题考查数列的前100项和的求法,考查分段数列的求和等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=mx-alnx-m\;,\;\;g(x)=\frac{x}{{{e^{x-1}}}}$,其中m,a均为实数,e为自然对数的底数.
(I)求函数g(x)的极值;
(II)设m=1,a<0,若对任意的x1,x2∈[3,4](x1≠x2),$|{f({x_2})-f({x_1})}|<|{\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}}|$恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a>0,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.
(1)求2a+b的值;
(2)若a+2b≥tab,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的直角距离为L(P,Q)=|x1-x2|+|y1-y2|.
已知点A(x,1),B(1,2),C(5,3).
(1)若L(A,B)>L(A,C),求x的取值范围;
(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={y|y=x},N={x|x2+y2=1},则M∩N=(  )
A.{($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}B.{(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$),($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)}C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知sinθ+cosθ=sinθcosθ,则角θ所在的区间可能是(  )
A.($\frac{π}{4}$,$\frac{π}{2}$)B.($\frac{π}{2}$,$\frac{3π}{4}$)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.(π,$\frac{5π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于所有实数x,不等式x2log2$\frac{4(a+1)}{a}$+2xlog2$\frac{2a}{a+1}$+log2$\frac{(a+1)^{2}}{4{a}^{2}}$>0恒成立,则a的取值范围是(  )
A.(0,1)B.(1,+∞)C.(0,1]D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某调查者从调查中获知某公司近年来科研费用支出x(万元)与公司所获得利润y(万元)的统计资料如下表:
序号科研费用支出xi利润yixiyixi2
153115525
21140440121
343012016
453417025
5325759
6220404
合计301801 000200
则利润y对科研费用支出x的线性回归方程为$\stackrel{∧}{y}$=2x+20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义域为(0,+∞)的函数f(x)的图象经过点(2,4),且对?x∈(0,+∞),都有f′(x)>1,则不等式f(2x-2)<2x的解集为(  )
A.(0,+∞)B.(0,2)C.(1,2)D.(0,1)

查看答案和解析>>

同步练习册答案