精英家教网 > 高中数学 > 题目详情
13.已知定义域为(0,+∞)的函数f(x)的图象经过点(2,4),且对?x∈(0,+∞),都有f′(x)>1,则不等式f(2x-2)<2x的解集为(  )
A.(0,+∞)B.(0,2)C.(1,2)D.(0,1)

分析 令g(x)=f(x)-x,求出函数的导数,得到函数g(x)的单调性,问题转化为g(2x-2)<g(2),根据函数的单调性求出x的范围即可.

解答 解:令g(x)=f(x)-x,
则g′(x)=f′(x)-1>0,
故g(x)在(0,+∞)递增,
而g(2)=f(2)-2=2,
由f(2x-2)<2x
得g(2x-2)<g(2),
故$\left\{\begin{array}{l}{{2}^{x}-2>0}\\{{2}^{x}-2<2}\end{array}\right.$,解得:1<x<2,
故选:C.

点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知an=n2cos(nπ)-2nsin2($\frac{nπ}{2}$),则a1+a2+a3+…+100=(  )
A.-5050B.10100C.50D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}是正项数列,且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n({n∈{N^*}})$,则an=4(n+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(x2-$\frac{1}{x}$)n的二项展开式中的所有二项式系数和为64,则该二项式展开式中的常数项为(  )
A.20B.-15C.-20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若0<x<$\frac{π}{2}$,则4x与3sinx的大小关系是(  )
A.4x<3sinxB.4x>3sinxC.4x=3sinxD.与x取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,x≤0\\{log_a}x(a>0,a≠1),x>0\end{array}$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(  )
A.($\frac{{\sqrt{5}}}{5}$,1)B.(0,$\frac{\sqrt{5}}{5}$)C.$(\frac{{\sqrt{3}}}{3}\;,\;\;1)$D.$(0\;,\;\;\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|2x2-a|.
(Ⅰ)若f(0)+f(1)>$\frac{3|a|}{a}$,求实数a的取值范围;
(Ⅱ)对任意|x|≤1,f(x)≤1恒成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U={1,3,5,7},集合A={1,5},则∁UA的子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,则a10=(  )
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案