| A. | 12 | B. | 24 | C. | 36 | D. | 72 |
分析 根据题意,分3步进行分析:①、将B社区的2人安排在两端,②、将A社区的1人安排在中间,③、将C社区的3人分成2组,一组2人,另一组1人,再将分好的2组,安排在A社区人的两边,分别求出每一步的情况数目,由分步计数原理计算可得答案.
解答 解:根据题意,分3步进行分析:
①、将B社区的2人安排在两端,有A22=2种情况,
②、将A社区的1人安排在中间,有1种情况,
③、将C社区的3人分成2组,一组2人,另一组1人,有C32=3种分组方法,
再将分好的2组,安排在A社区人的两边,有2A22=4种情况,
则所有不同的排法的种数有2×3×4=24种;
故选:B.
点评 本题考查排列、组合的应用,涉及分步计数原理的应用,注意将A社区的1人插在C社区的三人之间即可.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{24}{7}$ | C. | $-\frac{21}{24}$ | D. | $\frac{{2\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4x<3sinx | B. | 4x>3sinx | C. | 4x=3sinx | D. | 与x取值有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$•$\overrightarrow{b}$=2 | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$ | C. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| | D. | $\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com