精英家教网 > 高中数学 > 题目详情
14.若(a-2i)i=b-i,其中,a,b∈R,i是虚数单位,则复数z=a+bi的模等于$\sqrt{5}$.

分析 利用复数相等的条件列式求得a,b的值,再由复数模的计算公式求解.

解答 解:由(a-2i)i=2+ai=b-i,得:
b=2,a=-1.
∴z=a+bi=-1+2i,
则|z|=$\sqrt{(-1)^{2}+{2}^{2}}=\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=$\frac{1}{2}$AA1=1,D是棱AA1上的点,DC1⊥BD.
(Ⅰ)求证:D为AA1中点;
(Ⅱ)求直线BC1与平面BDC所成角正弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司对新招聘的40名业务人员迸行业务培训,现按新业务员的年龄(单位:岁)进行分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)培训中有一个传球活动:音乐响起,按特定顺序开始第1次传一个球,音乐停时,球在谁手,谁就表演一个节目,表演完毕后,从表演者开始下一次传球,如此进行3次,若以频率为概率,且停音乐是随机的,求至少有2次表演者的年龄在[20,30)的概率;
(2)培训前决定在年龄在[35,45]的新业务员中任意选出3名小组长,设年龄在[40,45]中选取的人数为X,求随机变量X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆$\frac{x^2}{9}+\frac{y^2}{8}=1$的左、右焦点分别为F1,F2,点P是椭圆上一点,且$\overrightarrow{{F_1}{F_2}}•\overrightarrow{P{F_2}}=0$,则|PF1|等于(  )
A.$\frac{10}{3}$B.$\frac{5}{3}$C.$\frac{7}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知3sin$\frac{x}{2}-cos\frac{x}{2}$=0.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=6-12x+x3
(1)求函数f(x)的极值;
(2)求过点P(3,-3)并且与函数f(x)图象相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{a}{3}{x^3}+\frac{b}{2}{x^2}+cx(a≠0)$与g(x)=xlnx.
(1)若f(x)的减区间是(1,3),且f'(x)的最小值为-1求f(x)的解析式;
(2)当a=1,c=2时,若函数ϕ(x)=f'(x)+g(x)有零点,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.现有A社区1人、B社区2人、C社区3人共6人站成一排照相,若B社区2人站两端,C社区3人中有且只有两位相邻,则所有不同的排法的种数是(  )
A.12B.24C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将函数$y=sin(2x+\frac{π}{6})$的图象向左平移m(m>0)个单位长度,得到的函数y=f(x)在区间$[-\frac{π}{12},\frac{5π}{12}]$上单调递减,则m的最小值为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案