精英家教网 > 高中数学 > 题目详情
9.已知3sin$\frac{x}{2}-cos\frac{x}{2}$=0.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$的值.

分析 利用同角三角函数的基本关系、二倍角公式,求得要求式子的值.

解答 解:(1)∵$3sin\frac{x}{2}-cos\frac{x}{2}=0$,∴$tan\frac{x}{2}=\frac{1}{3}$,
∴$tanx=\frac{{2tan\frac{x}{2}}}{{1-{{tan}^2}\frac{x}{2}}}=\frac{{2×\frac{1}{3}}}{{1-{{(\frac{1}{3})}^2}}}=\frac{3}{4}$.
(2)$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$=$\frac{{{{cos}^2}x-{{sin}^2}x}}{(cosx-sinx)sinx}$=$\frac{{{{cos}^2}x-{{sin}^2}x}}{{cosxsinx-{{sin}^2}x}}$=$\frac{{1-{{tan}^2}x}}{{tanx-{{tan}^2}x}}$=$\frac{{1-{{(\frac{3}{4})}^2}}}{{\frac{3}{4}-{{(\frac{3}{4})}^2}}}$=$\frac{7}{3}$.

点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}}\right.$,则z=3x+2y的最大值为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{lnx+ax+1}{x}$.
(1)若对任意x>0,f(x)<0恒成立,求实数a的取值范围;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),证明:$\frac{{{x}_{1}}^{2}}{{x}_{2}}$+$\frac{{{x}_{2}}^{2}}{{x}_{1}}$>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z的共轭复数记为$\overline z,i$为虚数单位,若(1+2i)$\overline z$=4-3i,复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若(a-2i)i=b-i,其中,a,b∈R,i是虚数单位,则复数z=a+bi的模等于$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在边长为2的菱形ABCD中,∠BAD=60°,E为BC中点,则$\overrightarrow{AE}•\overrightarrow{BD}$=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为${F_1}{、_{_1}}{F_2}$,点B是双曲线的右顶点,A是其虚轴的端点,如图所示.若${S_{△AB{F_2}}}=\frac{1}{4}{S_{△AOB}}$,则双曲线的两条渐近线的夹角(锐角或直角)的正切值为(  )
A.$\frac{5}{4}$B.$\frac{24}{7}$C.$-\frac{21}{24}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知F是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,过点F作斜率为2的直线l使它与圆x2+y2=b2相切,则椭圆离心率是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

同步练习册答案