精英家教网 > 高中数学 > 题目详情
4.已知复数z的共轭复数记为$\overline z,i$为虚数单位,若(1+2i)$\overline z$=4-3i,复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:若$(1+2i)\overline z=4-3i$,∴$\overline{z}$=$\frac{4-3i}{1+2i}$=$\frac{(4-3i)(1-2i)}{(1+2i)(1-2i)}$=$\frac{-2-11i}{5}$
复数z=$-\frac{2}{5}$+$\frac{11}{5}$i在复平面内对应的点($-\frac{2}{5}$,$\frac{11}{5}$)位于第二象限.
故选:B.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数列{an}为等差数列,数列{bn}为等比数列,且满足a2017+a2018=π,${b}_{20}^{2}$=4,则tan$\frac{{a}_{2}+{a}_{4033}}{{b}_{1}{b}_{39}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={1,2,a},B={2,3},若B?A,则实数a的值是(  )
A.1B.2C.3D.2或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$若f(x)=\left\{{\begin{array}{l}{\sqrt{x},x≥0}\\{1+{x^2},x<0}\end{array}}\right.$,则f′(1)•f′(-1)=(  )
A.-2B.-3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=lg(x2-x-2)的定义域为集合A,集合B={x|-3≤x≤3}
(1)求A∩B和A∪B;   
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知3sin$\frac{x}{2}-cos\frac{x}{2}$=0.
(1)求tanx;
(2)求$\frac{cos2x}{{\sqrt{2}cos(\frac{π}{4}+x)sinx}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,曲线Γ由曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和曲线C2::$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0,y≤0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,已知F2(2,0)F4(6,0).
(1)求曲线C1和C2的方程
(2)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A,B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.
(3)若直线l1过点F4交曲线C1于点C,D,求△CDF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方体ABCD-A1B1C1D1,设棱长为a,过BD且与直线AC1平行的截面面积是(  )
A.$\frac{a^2}{2}$B.$\frac{{\sqrt{6}}}{4}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{\sqrt{3}}}{2}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.满足{1,2}∪M={1,2,3}的所有集合M有4个.

查看答案和解析>>

同步练习册答案