·ÖÎö £¨1£©ÓÉF2£¨2£¬0£©£¬F4£¨6£¬0£©£¬¿ÉµÃ$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=36}\\{{a}^{2}-{b}^{2}=4}\end{array}\right.$£¬½âµÃa£¬bµÄÖµ£»
£¨2£©ÇúÏßC2µÄ½¥½üÏßΪy=¡À$\frac{b}{a}$x£¬Èçͼ£¬ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬ÉèÖ±Ïßl£ºy=$\frac{b}{a}$£¨x-m£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª2x2-2mx+£¨m2-a2£©=0£¬ÀûÓá÷£¾0£¬¸ùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½£¬Ö»ÒªÖ¤Ã÷y0=-$\frac{b}{a}$x0¼´¿É£®
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪx=ny+6£¨n£¾0£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨5+4n2£©y2+48ny+64=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ßF2£¨2£¬0£©£¬F4£¨6£¬0£©£¬
¡à$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=36}\\{{a}^{2}-{b}^{2}=4}\end{array}\right.$⇒$\left\{\begin{array}{l}{{a}^{2}=20}\\{{b}^{2}=16}\end{array}\right.$£¬
ÔòÇúÏߦ£µÄ·½³ÌΪ$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{16}$=1£¨y¡Ü0£©ºÍ$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1£¨y£¾0£©£»
£¨2£©Ö¤Ã÷£ºÇúÏßC2µÄ½¥½üÏßΪy=¡À$\frac{b}{a}$x£¬Èçͼ£¬
ÉèÖ±Ïßl£ºy=$\frac{b}{a}$£¨x-m£©
Ôò$\left\{\begin{array}{l}{y=\frac{b}{a}£¨x-m£©}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$⇒2x2-2mx+£¨m2-a2£©=0£¬
¡÷=£¨2m£©2-4•2•£¨m2-a2£©=8a2-4m2£¾0⇒-$\sqrt{2}$a£¼m£¼$\sqrt{2}$a£¬
ÓÖÓÉÊýÐνáºÏÖªm¡Ýa£¬a¡Üm£¼$\sqrt{2}$a£¬
ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©
Ôòx1+x2=m£¬x1x2=$\frac{{m}^{2}-{a}^{2}}{2}$£¬
¡àx0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{2}$m£¬y0=$\frac{b}{a}$£¨x0-m£©=-$\frac{b}{a}$•$\frac{m}{2}$£¬
¡ày0=-$\frac{b}{a}$x0£¬
¼´ÏÒABµÄÖеãM±ØÔÚÇúÏßC2µÄÁíÒ»Ìõ½¥½üÏßy=-$\frac{b}{a}$xÉÏ£®
£¨3£©ÓÉ£¨1£©Öª£¬ÇúÏßC1Ϊ$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{16}$=1£¨y¡Ü0£©£¬µãF4£¨6£¬0£©£®
ÉèÖ±Ïßl1µÄ·½³ÌΪx=ny+6£¨n£¾0£©
ÓÉ$\left\{\begin{array}{l}{x=ny+6}\\{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{16}=1}\end{array}\right.$⇒£¨4n2+5£©y2+48ny+64=0£¬
¡÷=£¨48n£©2-4¡Á64£¨4n2+5£©£¾0⇒n2£¾1£¬
ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
ÓÉΤ´ï¶¨Àí£ºy3+y4=-$\frac{48n}{5+4{n}^{2}}$£¬y3y4=$\frac{64}{5+4{n}^{2}}$£¬
|y3-y4|=$\sqrt{£¨{y}_{3}+{y}_{4}£©^{2}-4{y}_{3}{y}_{4}}$=16•$\frac{\sqrt{5}\sqrt{{n}^{2}-1}}{5+4{n}^{2}}$£®
S${\;}_{¡÷CD{F}_{1}}$=$\frac{1}{2}$|F1F4|¡Á|y3-y4|=$\frac{1}{2}$¡Á8¡Á16$\sqrt{5}$¡Á$\frac{\sqrt{{n}^{2}-1}}{5+4{n}^{2}}$=64$\sqrt{5}$¡Á$\frac{\sqrt{{n}^{2}-1}}{5+4{n}^{2}}$
Áît=$\sqrt{{n}^{2}-1}$£¾0£¬¡àn2=t2+1£¬
S${\;}_{¡÷CD{F}_{1}}$=64$\sqrt{5}$¡Á$\frac{t}{9+4{t}^{2}}$=64$\sqrt{5}$¡Á$\frac{1}{4t+\frac{9}{t}}$£¬
¡ßt£¾0£¬¡à4t+$\frac{9}{t}$¡Ý12£¬µ±ÇÒ½öµ±t=$\frac{3}{2}$¼´n=$\frac{\sqrt{13}}{2}$ʱµÈºÅ³ÉÁ¢£®
¡àn=$\frac{\sqrt{13}}{2}$ʱ£¬¡÷CDF1Ãæ»ýµÄ×î´óֵΪ$\frac{16\sqrt{5}}{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëË«ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{2}$+$\frac{2}{3}$ | B£® | $\frac{¦Ð}{2}$+2 | C£® | $\frac{¦Ð}{2}$+$\frac{3}{2}$ | D£® | $\frac{¦Ð}{2}$+$\frac{10}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | pÊÇqµÄ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | pÊÇqµÄ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | pÊÇqµÄ³äÒªÌõ¼þ | D£® | pÊÇqµÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨\frac{4}{5}£¬36£©$ | B£® | £¨1£¬36£© | C£® | $[\frac{4}{5}£¬\frac{36}{5}]$ | D£® | £¨1£¬9£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $6+2\sqrt{3}$ | B£® | $7+2\sqrt{3}$ | C£® | $6+4\sqrt{3}$ | D£® | $7+4\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com