16£®Èçͼ£¬ÇúÏߦ£ÓÉÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ºÍÇúÏßC2£º£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£¬y¡Ü0£©×é³É£¬ÆäÖеãF1£¬F2ΪÇúÏßC1ËùÔÚÔ²×¶ÇúÏߵĽ¹µã£¬µãF3£¬F4ΪÇúÏßC2ËùÔÚÔ²×¶ÇúÏߵĽ¹µã£¬ÒÑÖªF2£¨2£¬0£©F4£¨6£¬0£©£®
£¨1£©ÇóÇúÏßC1ºÍC2µÄ·½³Ì
£¨2£©Èçͼ£¬×÷Ö±ÏßlƽÐÐÓÚÇúÏßC2µÄ½¥½üÏߣ¬½»ÇúÏßC1ÓÚµãA£¬B£¬ÇóÖ¤£ºÏÒABµÄÖеãM±ØÔÚÇúÏßC2µÄÁíÒ»Ìõ½¥½üÏßÉÏ£®
£¨3£©ÈôÖ±Ïßl1¹ýµãF4½»ÇúÏßC1ÓÚµãC£¬D£¬Çó¡÷CDF1Ãæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉF2£¨2£¬0£©£¬F4£¨6£¬0£©£¬¿ÉµÃ$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=36}\\{{a}^{2}-{b}^{2}=4}\end{array}\right.$£¬½âµÃa£¬bµÄÖµ£»
£¨2£©ÇúÏßC2µÄ½¥½üÏßΪy=¡À$\frac{b}{a}$x£¬Èçͼ£¬ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬ÉèÖ±Ïßl£ºy=$\frac{b}{a}$£¨x-m£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª2x2-2mx+£¨m2-a2£©=0£¬ÀûÓá÷£¾0£¬¸ùÓëϵÊýµÄ¹ØÏµ¡¢Öеã×ø±ê¹«Ê½£¬Ö»ÒªÖ¤Ã÷y0=-$\frac{b}{a}$x0¼´¿É£®
£¨3£©ÉèÖ±Ïßl1µÄ·½³ÌΪx=ny+6£¨n£¾0£©£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£¨5+4n2£©y2+48ny+64=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖʼ´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßF2£¨2£¬0£©£¬F4£¨6£¬0£©£¬
¡à$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=36}\\{{a}^{2}-{b}^{2}=4}\end{array}\right.$⇒$\left\{\begin{array}{l}{{a}^{2}=20}\\{{b}^{2}=16}\end{array}\right.$£¬
ÔòÇúÏߦ£µÄ·½³ÌΪ$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{16}$=1£¨y¡Ü0£©ºÍ$\frac{{x}^{2}}{20}$-$\frac{{y}^{2}}{16}$=1£¨y£¾0£©£»
£¨2£©Ö¤Ã÷£ºÇúÏßC2µÄ½¥½üÏßΪy=¡À$\frac{b}{a}$x£¬Èçͼ£¬
ÉèÖ±Ïßl£ºy=$\frac{b}{a}$£¨x-m£©
Ôò$\left\{\begin{array}{l}{y=\frac{b}{a}£¨x-m£©}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$⇒2x2-2mx+£¨m2-a2£©=0£¬
¡÷=£¨2m£©2-4•2•£¨m2-a2£©=8a2-4m2£¾0⇒-$\sqrt{2}$a£¼m£¼$\sqrt{2}$a£¬
ÓÖÓÉÊýÐνáºÏÖªm¡Ýa£¬a¡Üm£¼$\sqrt{2}$a£¬
ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©
Ôòx1+x2=m£¬x1x2=$\frac{{m}^{2}-{a}^{2}}{2}$£¬
¡àx0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{1}{2}$m£¬y0=$\frac{b}{a}$£¨x0-m£©=-$\frac{b}{a}$•$\frac{m}{2}$£¬
¡ày0=-$\frac{b}{a}$x0£¬
¼´ÏÒABµÄÖеãM±ØÔÚÇúÏßC2µÄÁíÒ»Ìõ½¥½üÏßy=-$\frac{b}{a}$xÉÏ£®  
£¨3£©ÓÉ£¨1£©Öª£¬ÇúÏßC1Ϊ$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{16}$=1£¨y¡Ü0£©£¬µãF4£¨6£¬0£©£®
ÉèÖ±Ïßl1µÄ·½³ÌΪx=ny+6£¨n£¾0£©
ÓÉ$\left\{\begin{array}{l}{x=ny+6}\\{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{16}=1}\end{array}\right.$⇒£¨4n2+5£©y2+48ny+64=0£¬
¡÷=£¨48n£©2-4¡Á64£¨4n2+5£©£¾0⇒n2£¾1£¬
ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
ÓÉΤ´ï¶¨Àí£ºy3+y4=-$\frac{48n}{5+4{n}^{2}}$£¬y3y4=$\frac{64}{5+4{n}^{2}}$£¬
|y3-y4|=$\sqrt{£¨{y}_{3}+{y}_{4}£©^{2}-4{y}_{3}{y}_{4}}$=16•$\frac{\sqrt{5}\sqrt{{n}^{2}-1}}{5+4{n}^{2}}$£®
S${\;}_{¡÷CD{F}_{1}}$=$\frac{1}{2}$|F1F4|¡Á|y3-y4|=$\frac{1}{2}$¡Á8¡Á16$\sqrt{5}$¡Á$\frac{\sqrt{{n}^{2}-1}}{5+4{n}^{2}}$=64$\sqrt{5}$¡Á$\frac{\sqrt{{n}^{2}-1}}{5+4{n}^{2}}$
Áît=$\sqrt{{n}^{2}-1}$£¾0£¬¡àn2=t2+1£¬
S${\;}_{¡÷CD{F}_{1}}$=64$\sqrt{5}$¡Á$\frac{t}{9+4{t}^{2}}$=64$\sqrt{5}$¡Á$\frac{1}{4t+\frac{9}{t}}$£¬
¡ßt£¾0£¬¡à4t+$\frac{9}{t}$¡Ý12£¬µ±ÇÒ½öµ±t=$\frac{3}{2}$¼´n=$\frac{\sqrt{13}}{2}$ʱµÈºÅ³ÉÁ¢£®
¡àn=$\frac{\sqrt{13}}{2}$ʱ£¬¡÷CDF1Ãæ»ýµÄ×î´óֵΪ$\frac{16\sqrt{5}}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëË«ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0¡Ü¦Õ¡Ü¦Ð£©ÊÇRÉϵÄżº¯Êý£¬ÆäͼÏó¹ØÓÚµãM£¨$\frac{3¦Ð}{4}$£¬0£©¶Ô³Æ£¬ÇÒÔÚÇø¼ä[0£¬¦Ð]ÉÏÊǵ¥µ÷º¯Êý£¬Ôò¦Ø+¦Õ=£¨¡¡¡¡£©
A£®$\frac{¦Ð}{2}$+$\frac{2}{3}$B£®$\frac{¦Ð}{2}$+2C£®$\frac{¦Ð}{2}$+$\frac{3}{2}$D£®$\frac{¦Ð}{2}$+$\frac{10}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª$p£ºab£¾0£»q£º\frac{b}{a}+\frac{a}{b}¡Ý2$£¬Ôò£¨¡¡¡¡£©
A£®pÊÇqµÄ³ä·Ö¶ø²»±ØÒªÌõ¼þB£®pÊÇqµÄ±ØÒª¶ø²»³ä·ÖÌõ¼þ
C£®pÊÇqµÄ³äÒªÌõ¼þD£®pÊÇqµÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¸´ÊýzµÄ¹²éÊý¼ÇΪ$\overline z£¬i$ΪÐéÊýµ¥Î»£¬Èô£¨1+2i£©$\overline z$=4-3i£¬¸´ÊýzÔÚ¸´Æ½ÃæÄÚ¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýy=f£¨x£©ÊÇRÉϵÄżº¯Êý£¬f£¨2£©=1£¬f'£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êýy=f'£¨x£©µÄͼÏóÈçͼËùʾ£¬ÈôÁ½¸öÕýʵÊýa£¬b  Âú×ãf£¨2a+b-4£©£¼1£¬Ôò a2+b2µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨\frac{4}{5}£¬36£©$B£®£¨1£¬36£©C£®$[\frac{4}{5}£¬\frac{36}{5}]$D£®£¨1£¬9£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬Ôڱ߳¤Îª2µÄÁâÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬EΪBCÖе㣬Ôò$\overrightarrow{AE}•\overrightarrow{BD}$=-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èôlog9£¨3a+4b£©=log3$\sqrt{ab}$£¬Ôòa+bµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$6+2\sqrt{3}$B£®$7+2\sqrt{3}$C£®$6+4\sqrt{3}$D£®$7+4\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª¶¨µãA£¨-4£¬0£©¼°ÍÖÔ²C£ºx2+3y2=6£¬Ö±ÏßMN¾­¹ýÍÖÔ²CµÄÓÒ½¹µã£¬µ±M¡¢NÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬¡÷MNAµÄÃæ»ýµÄ×î´óֵΪ3$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬²àÀâPA¡ÍÆ½ÃæABCD£¬EΪADµÄÖе㣬BE¡ÎCD£¬BE¡ÍAD£¬PA=AE=BE=2£¬CD=1£»
£¨1£©Çó¶þÃæ½ÇC-PB-EµÄÓàÏÒÖµ£»
£¨2£©ÔÚÏß¶ÎPEÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃDM¡ÎÆ½ÃæPBC£¿Èô´æÔÚ£¬Çó³öµãMµÄλÖã¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸