精英家教网 > 高中数学 > 题目详情
8.若log9(3a+4b)=log3$\sqrt{ab}$,则a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

分析 根据对数的运算性质可得$\frac{4}{a}$+$\frac{3}{b}$=1,a,b>0,再根据基本不等式即可求出.

解答 解:∵log9(3a+4b)=log3$\sqrt{ab}$,则
∴3a+4b=ab,
∴$\frac{4}{a}$+$\frac{3}{b}$=1,a,b>0.
∴a+b=(a+b)($\frac{4}{a}$+$\frac{3}{b}$)=4+3+$\frac{4b}{a}$+$\frac{3a}{b}$≥7+2$\sqrt{\frac{4b}{a}•\frac{3a}{b}}$=7+4$\sqrt{3}$
当且仅当a=4+2$\sqrt{3}$时取等号.
∴a+b的最小值是7+4$\sqrt{3}$.
故选:D.

点评 本题考查了对数的运算性质、基本不等式的性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知关于x的方程t(2-cosx)=1-sinx在(0,π)上有实根,则实数t的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=lg(x2-x-2)的定义域为集合A,集合B={x|-3≤x≤3}
(1)求A∩B和A∪B;   
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,曲线Γ由曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和曲线C2::$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0,y≤0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,已知F2(2,0)F4(6,0).
(1)求曲线C1和C2的方程
(2)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A,B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.
(3)若直线l1过点F4交曲线C1于点C,D,求△CDF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且a,2b,c成等差数列,则cosB的最小值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方体ABCD-A1B1C1D1,设棱长为a,过BD且与直线AC1平行的截面面积是(  )
A.$\frac{a^2}{2}$B.$\frac{{\sqrt{6}}}{4}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{\sqrt{3}}}{2}{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知随机变量η,ξ具有关系η=3ξ+2,且E(ξ)=1,D(η)=9,则下列式子中正确的是(  )
A.E(η)=5,D(ξ)=3B.E(η)=3,D(ξ)=27C.E(η)=9,D(ξ)=81D.E(η)=5,D(ξ)=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中,P是椭圆$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1上的一个动点,点A(1,1),B(0,-1),则|PA|+|PB|的最大值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={0,2},无穷数列{an}满足an∈M,且$t=\frac{a_1}{3}+\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+\frac{{{a_{100}}}}{{{3^{100}}}}$,则实数t一定不属于(  )
A.[0,1)B.(0,1]C.$[\frac{1}{3},\frac{2}{3})$D.$(\frac{1}{3},\frac{2}{3}]$

查看答案和解析>>

同步练习册答案