精英家教网 > 高中数学 > 题目详情
14.已知关于x的方程t(2-cosx)=1-sinx在(0,π)上有实根,则实数t的取值范围是[0,1).

分析 把已知方程变形,可得t=$\frac{sinx-1}{cosx-2}$,再由$\frac{sinx-1}{cosx-2}$的几何意义,即半圆x2+y2=1(-1<x<1,y>0)上的动点与定点P(2,1)连线的斜率求解.

解答 解:由t(2-cosx)=1-sinx,得t=$\frac{1-sinx}{2-cosx}=\frac{sinx-1}{cosx-2}$.
∵x∈(0,π),
∴$\frac{sinx-1}{cosx-2}$的几何意义为半圆x2+y2=1(-1<x<1,y>0)上的动点与定点P(2,1)连线的斜率.
如图:
∵${k}_{PA}=\frac{1-0}{2-1}=1$,kPB=0.
∴$\frac{sinx-1}{cosx-2}$的取值范围为[0,1).
∴t的取值范围为[0,1).
故答案为:[0,1).

点评 本题考查根的存在性与根的个数判断,考查数学转化思想方法与数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知命题:①“任意能被2整除的整数都是偶数”的否定是“任意能被2整除的整数不都是偶数”②“菱形的两条对角线互相垂直”的逆命题;③“若a>b,a,b∈R,则a+c>b+c”的逆否命题;④“若a+b≠3,则a≠1或b≠2”的否命题;⑤若“p或q”为假命题,则“非p且非q”是真命题.上述命题中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-asinx-1(a∈R).
(Ⅰ)若a=1,求f(x)在x=0处的切线方程;
(Ⅱ)若f(x)≥0对一切x∈[0,1]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M($\frac{3π}{4}$,0)对称,且在区间[0,π]上是单调函数,则ω+φ=(  )
A.$\frac{π}{2}$+$\frac{2}{3}$B.$\frac{π}{2}$+2C.$\frac{π}{2}$+$\frac{3}{2}$D.$\frac{π}{2}$+$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:
井号 I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(1)在散点图中1~6号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为y=6.5x+a,求a,并估计y的预报值;
(2)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\hat b,\hat a$的值($\hat b,\hat a$精确到0.01)相比于(1)中b,a的值之差(即:$\frac{\hat b-b}{b},\frac{\hat a-a}{a}$)不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x,\sum_{i=1}^4{x_{2i-1}^2}=94,\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(3)设出油量与钻探深度的比值k不低于20的勘探井称为优质井,在原有井号2~6的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A={-1,0,2},B={2,a2},若B⊆A,则实数a的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若($\frac{x}{2}$-$\frac{1}{3x}$)a的展开式中只有第5项的二项式系数最大,则展开式中常数项是$\frac{35}{648}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$p:ab>0;q:\frac{b}{a}+\frac{a}{b}≥2$,则(  )
A.p是q的充分而不必要条件B.p是q的必要而不充分条件
C.p是q的充要条件D.p是q的既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若log9(3a+4b)=log3$\sqrt{ab}$,则a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

查看答案和解析>>

同步练习册答案