精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ex-asinx-1(a∈R).
(Ⅰ)若a=1,求f(x)在x=0处的切线方程;
(Ⅱ)若f(x)≥0对一切x∈[0,1]恒成立,求a的取值范围.

分析 (Ⅰ)把a=1代入函数解析式,求出导函数,得到f′(0),再求出f(0),利用直线方程的点斜式得答案;
(Ⅱ)求出原函数的导函数,可得f′(x)≥0对一切x∈[0,1]恒成立,然后对a分类讨论可得a的取值范围.

解答 解:(Ⅰ)当a=1时,f(x)=ex-sinx-1,f′(x)=ex-cosx,
∴f′(0)=0,又f(0)=0,
∴y-0=0(x-0),即y=0.
∴a=1时,f(x)在x=0处的切线方程为y=0;
(Ⅱ)f′(x)=ex-acosx,若a≤0,则f′(x)≥0对一切x∈[0,1]恒成立,
∴f(x)在[0,1]上单调递增,∴f(x)≥f(0)=0,符合题意;
若0<a≤1,f′(x)=ex-acosx,由0≤x≤1知,0<acosx≤a,ex≥1.
∴f′(x)>0,f(x)在[0,1]上单调递增,∴f(x)≥f(0)=0,符合题意;
若a>1,由y=ex与y=acosx的图象的位置关系知,
存在x0∈(0,1),当0<x<x0 时,ex<acosx,
此时f′(x)<0,f(x)在[0,x0]上单调递减;
当0<x<x0 时,f(x)<f(0)=0.与题意矛盾.
综上,a的取值范围为(-∞,1].

点评 本题考查利用导数研究过曲线上某点处的切线方程,考查恒成立问题的求解方法,体现了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow a,\overrightarrow b$为单位向量,且$\overrightarrow a⊥\overrightarrow b$,向量$\overrightarrow c$满足$|{\overrightarrow c+\overrightarrow a+\overrightarrow b}|=3$,则$|{\overrightarrow c}|$的取值范围为(  )
A.$[1,1+\sqrt{2}]$B.$[2-\sqrt{2},2+\sqrt{2}]$C.$[\sqrt{2},2\sqrt{2}]$D.$[3-\sqrt{2},3+\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图所示的矩形中随机投掷30000个点,则落在曲线C下方(曲线C为正态分布N(1,1)的正态曲线)的点的个数的估计值为(  )
A.4985B.8185C.9970D.24555

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.各项为正的数列{an}满足${a_1}=\frac{1}{2},{a_{n+1}}=\frac{{{a_n}^2}}{λ}+{a_n}(n∈{N^*})$,
(1)当λ=an+1时,求证:数列{an}是等比数列,并求其公比;
(2)当λ=2时,令${b_n}=\frac{1}{{{a_n}+2}}$,记数列{bn}的前n项和为Sn,数列{bn}的前n项之积为Tn
求证:对任意正整数n,2n+1Tn+Sn为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若曲线y=lnx的一条切线是直线$y=\frac{1}{2}x+b$,则实数b的值为-1+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}为等差数列,数列{bn}为等比数列,且满足a2017+a2018=π,${b}_{20}^{2}$=4,则tan$\frac{{a}_{2}+{a}_{4033}}{{b}_{1}{b}_{39}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知命题p:若a<b,则ac2<bc2,命题$q:?{x_0}>0,x_0^2-ln{x_0}=1$.那么下列命题中是真命题的个数是2.
(1)pΛq
(2)p∨q
(3)¬pΛ¬q
(4)¬p∨¬q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知关于x的方程t(2-cosx)=1-sinx在(0,π)上有实根,则实数t的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数f(x)=lg(x2-x-2)的定义域为集合A,集合B={x|-3≤x≤3}
(1)求A∩B和A∪B;   
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.

查看答案和解析>>

同步练习册答案