精英家教网 > 高中数学 > 题目详情
19.已知集合A={-1,0,2},B={2,a2},若B⊆A,则实数a的值为0.

分析 由B⊆A,可得a2=0,解得a.

解答 解:∵B⊆A,∴a2=0,解得a=0.
故答案为:0.

点评 本题考查了元素与集合之间的关系、集合之间的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.下列说法中:
(1)函数f(x)=$\frac{1}{x}$在其定义域内单调递减     
(2)若a>b>0,则a-$\frac{1}{a}>b-\frac{1}{b}$;
(3)若a>0,b>0且2a+b=1,则$\frac{2}{a}+\frac{1}{b}$的最小值为9
(4)函数f(x)=$\frac{ax+1}{x+2}$在(-2,+∞)上是增函数,则实数a的取值范围是$(\frac{1}{2},+∞)$;
(5)已知a,b,c是实数,关于x的不等式ax2+bx+c≤0的解集是空集的充要条件是a>0且△≤0;
正确的序号为为(2),(3),(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}为等差数列,数列{bn}为等比数列,且满足a2017+a2018=π,${b}_{20}^{2}$=4,则tan$\frac{{a}_{2}+{a}_{4033}}{{b}_{1}{b}_{39}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈(0,+∞),sinx=x+$\frac{1}{x}$,命题q:?x∈R,πx<1,则下列为真命题的是(  )
A.p∧(?q)B.(?p)∧(?q)C.(?p)∧qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知关于x的方程t(2-cosx)=1-sinx在(0,π)上有实根,则实数t的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数x,y满足约束条件$\left\{\begin{array}{l}y-x≤0\\ x≤2\\ y≥\frac{1}{2}\end{array}\right.$,则$2x+\frac{1}{y}$的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={1,2,a},B={2,3},若B?A,则实数a的值是(  )
A.1B.2C.3D.2或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$若f(x)=\left\{{\begin{array}{l}{\sqrt{x},x≥0}\\{1+{x^2},x<0}\end{array}}\right.$,则f′(1)•f′(-1)=(  )
A.-2B.-3C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方体ABCD-A1B1C1D1,设棱长为a,过BD且与直线AC1平行的截面面积是(  )
A.$\frac{a^2}{2}$B.$\frac{{\sqrt{6}}}{4}{a^2}$C.$\frac{{\sqrt{3}}}{4}{a^2}$D.$\frac{{\sqrt{3}}}{2}{a^2}$

查看答案和解析>>

同步练习册答案