精英家教网 > 高中数学 > 题目详情
19.已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为9.

分析 联立方程组消元,由根与系数的关系得出A,B横坐标互为倒数,利用抛物线的性质得出4|FA|+|FB|=4x1+4+$\frac{1}{{x}_{1}}$+1,根据基本不等式得出最值.

解答 解:抛物线的焦点为F(1,0),
(1)若直线与x轴垂直,则直线方程为x=1,
代入抛物线方程得y=±2,
∴|FA|=|FB|=2,
∴4|FA|+|FB|=10.
(2)若直线与x轴不垂直,显然直线有斜率,
设直线方程为y=k(x-1),
联立方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=k(x-1)}\end{array}\right.$,消元得k2x2-(2k2+4)x+k2=0,
设A(x1,y1),B(x2,y2),
则x1x2=1,即x2=$\frac{1}{{x}_{1}}$,
∵A,B在抛物线上,∴|FA|=x1+1,|FB|=x2+1=$\frac{1}{{x}_{1}}+1$,
∴4|FA|+|FB|=4x1+4+$\frac{1}{{x}_{1}}$+1=4x1+$\frac{1}{{x}_{1}}$+5≥2$\sqrt{4{x}_{1}•\frac{1}{{x}_{1}}}$+5=9.
当且仅当4x1=$\frac{1}{{x}_{1}}$即x1=$\frac{1}{2}$时取等号.
综上,4|FA|+|FB|的最小值为9.
故答案为:9.

点评 本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若$tanθ=\frac{3}{4}$,则tan2θ=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线m,n和平面α,β,则下列四个命题中正确的是(  )
A.若α⊥β,m?β,则m⊥αB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥m,则n∥αD.若m∥α,m∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$y=\sqrt{{x^2}-3x-4}$的单调递增区间是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}满足an+1(an-1-an)=an-1(an-an+1),若a1=2,a2=1,则a20=(  )
A.$\frac{1}{{{2^{10}}}}$B.$\frac{1}{2^9}$C.$\frac{2}{21}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}是公差为d的等差数列,在{an}的每相邻两项之间插入这两项的算术平均值,得到新数列{an(1)},这样的操作叫做该数列的1次“A”扩展,连续m次“A”扩展,得到新数列{an(m)}.例如:数列1,2,3第1次“A”扩展后得到数列1,$\frac{3}{2}$,2,$\frac{5}{2}$,3;第2次“A”扩展后得到数列1,$\frac{5}{4}$,$\frac{3}{2}$,$\frac{7}{4}$,2,$\frac{9}{4}$,$\frac{5}{2}$,$\frac{11}{4}$,3.
(1)求证:{an(m)}为等差数列,并求其公差dm
(2)已知等差数列{an}共有n项,且a1=1,d=1,{an(m)}的所有项的和为Sn(m),求使Sn(n2)-n2>2017,成立的n的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx-ax,g(x)=$\frac{1}{x}$+a.
(1)当a=2 时,求F(x)=f(x)-g(x)在(0,2]的最大值;
(2)讨论函数F(x)=f(x)-g(x) 的单调性;
(3)若f(x)•g(x)≤0 在定义域内恒成立,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-a-ln(x+a).
(Ⅰ)当$a=\frac{1}{2}$时,求f(x)的单调区间与极值;
(Ⅱ)当a≤1时,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等腰直角三角形ABC中,AB=AC=4,且2$\overrightarrow{AE}$=$\overrightarrow{EC}$,$\overrightarrow{BD}$=$\overrightarrow{DC}$,则$\overrightarrow{BE}$•$\overrightarrow{AD}$=-$\frac{16}{3}$.

查看答案和解析>>

同步练习册答案