精英家教网 > 高中数学 > 题目详情
9.若$tanθ=\frac{3}{4}$,则tan2θ=$\frac{24}{7}$.

分析 由已知利用二倍角的正切函数公式即可计算得解.

解答 解:∵$tanθ=\frac{3}{4}$,
∴tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=$\frac{2×\frac{3}{4}}{1-(\frac{3}{4})^{2}}$=$\frac{24}{7}$.
故答案为:$\frac{24}{7}$.

点评 本题主要考查了二倍角的正切函数公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(x+5)(x2+x+a)的图象关于点(-2,0)对称,设关于x的不等式f'(x+b)<f'(x)的解集为M,若(1,2)?M,则实数b的取值范围为-6≤b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某学校开设校本选修课,其中人文类4门A1,A2,A3,A4,自然类3门B1,B2,B3,其中A1与B1上课时间一致,其余均不冲突.一位同学共选3门,若要求每类课程中至少选一门,则该同学共有25种选课方式.(用数字填空)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求证:$kC_n^k=nC_{n-1}^{k-1}$;
(Ⅱ)在数学上,常用符号来表示算式,如记$\sum_{i=0}^n{a_i}={a_0}+{a_1}+{a_2}+…+{a_n}$,其中i∈N,n∈N*
①若a0,a1,a2,…,an成等差数列,且a0=0,求证:$\sum_{i=0}^n{({a_i}•C_n^i})={a_n}•{2^{n-1}}$;
②若$\sum_{k=1}^{2n}{{{(1+x)}^k}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2n}}{x^{2n}}$,${b_n}=\sum_{i=0}^n{{a_{2i}}}$,记${d_n}=1+\sum_{i=1}^n{[{{(-1)}^i}}•{b_i}•C_n^i]$,且不等式t•(dn-1)≤bn恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,两个非共线向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为θ,M,N分别为OA与OB的中点,点C在直线MN上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则x2+y2的最小值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,梯形ABCD中,|$\overrightarrow{AD}$|=|$\overrightarrow{BC}$|,$\overrightarrow{EF}$∥$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则相等向量是(  )
A.$\overrightarrow{AD}$与$\overrightarrow{BC}$B.$\overrightarrow{OA}$与$\overrightarrow{OB}$C.$\overrightarrow{AC}$与$\overrightarrow{BD}$D.$\overrightarrow{EO}$与$\overrightarrow{OF}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,BC=1,角C=120°,cosA=$\frac{2}{3}$,则AB=$\frac{3\sqrt{15}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为9.

查看答案和解析>>

同步练习册答案