精英家教网 > 高中数学 > 题目详情
18.在△ABC中,BC=1,角C=120°,cosA=$\frac{2}{3}$,则AB=$\frac{3\sqrt{15}}{10}$.

分析 求出A的正弦函数值,利用正弦定理化简求解即可.

解答 解:在△ABC中,BC=1,角C=120°,cosA=$\frac{2}{3}$,sinA=$\frac{\sqrt{5}}{3}$,
则AB=$\frac{BC•sinC}{sinA}$=$\frac{1×\frac{\sqrt{3}}{2}}{\frac{\sqrt{5}}{3}}$=$\frac{3\sqrt{15}}{10}$.
故答案为:$\frac{3\sqrt{15}}{10}$.

点评 本题考查正弦定理的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.曲线$y=\frac{asinx}{x}$在(π,0)处的切线过点(0,2),则实数a=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$tanθ=\frac{3}{4}$,则tan2θ=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=6-12x+x3
(1)求函数f(x)的单调区间;
(2)求过点P(3,-3)并且与函数f(x)图象相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数y=$\sqrt{x-1}$的定义域为M,集合N={y|y=x2,x∈R},则M∩N=(  )
A.B.NC.(1,+∞)D.M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足${a_1}=\frac{1}{k}$,k≥2,k∈N*,[an]表示不超过an的最大整数(如[1.6]=1),记bn=[an],数列{bn}的前n项和为Tn
①若数列{an}是公差为1的等差数列,则T4=6;
②若数列{an}是公比为k+1的等比数列,则Tn=$\frac{1}{{k}^{2}}$[(1+k)n-nk-1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线m,n和平面α,β,则下列四个命题中正确的是(  )
A.若α⊥β,m?β,则m⊥αB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥m,则n∥αD.若m∥α,m∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$y=\sqrt{{x^2}-3x-4}$的单调递增区间是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-a-ln(x+a).
(Ⅰ)当$a=\frac{1}{2}$时,求f(x)的单调区间与极值;
(Ⅱ)当a≤1时,证明:f(x)>0.

查看答案和解析>>

同步练习册答案