精英家教网 > 高中数学 > 题目详情
10.已知直线m,n和平面α,β,则下列四个命题中正确的是(  )
A.若α⊥β,m?β,则m⊥αB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥m,则n∥αD.若m∥α,m∥β,则α∥β

分析 根据空间直线与平面的位置关系的定义,性质和判定进行分析判断.

解答 解:对于A,若α⊥β,m?β,则当m与α,β的交线垂直时才有m⊥α,故A错误;
对于B,若n∥α,则α内存在直线a,使得a∥n,
∵m⊥α,∴m⊥a,故而m⊥n.故B正确;
对于C,当n?α时,显然结论错误,故C错误;
对于D,若α∩β=l,则当m∥l时,显然当条件成立时,结论不成立,故D错误.
故选B.

点评 本题考查了空间线面位置关系的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.某学校开设校本选修课,其中人文类4门A1,A2,A3,A4,自然类3门B1,B2,B3,其中A1与B1上课时间一致,其余均不冲突.一位同学共选3门,若要求每类课程中至少选一门,则该同学共有25种选课方式.(用数字填空)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,BC=1,角C=120°,cosA=$\frac{2}{3}$,则AB=$\frac{3\sqrt{15}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设y=f(x)为定义在[-1,1]上的函数,且满足条件:①f(-1)=f(1)=0,②对任意u、v∈[-1,1],恒有|f(u)-f(v)|≤|u-v|,则以下结论正确的为(  )
A.存在u,v∈[-1,1],使|f(u)-f(v)|>1B.存在x0∈[-1,1],使f(x0)>1-x0
C.存在x0∈[-1,1],使f(x0)<x0-1D.对任意x∈[-1,1],有f(x)≤1-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有下列命题:
①复数z满足|z-1|+|z+1|=2则复数z所对应点Z的轨迹是一个椭圆;
②f′(x0)=$\lim_{h→0}\frac{{f({x_0}+h)-f({x_0})}}{h}=\lim_{x→{x_0}}\frac{{f(x)-f({x_0})}}{{x-{x_0}}}$=$\lim_{h→0}\frac{{f({x_0})-f({x_0}-h)}}{h}$;
③将5封信投入3个邮筒,不同的投法共有53种;
④已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是4和3;
⑤若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为9
其中正确的有:②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=$\frac{1}{2}$AA1=1,D是棱AA1上的点,DC1⊥BD.
(Ⅰ)求证:D为AA1中点;
(Ⅱ)求直线BC1与平面BDC所成角正弦值大小.

查看答案和解析>>

同步练习册答案