精英家教网 > 高中数学 > 题目详情
5.设y=f(x)为定义在[-1,1]上的函数,且满足条件:①f(-1)=f(1)=0,②对任意u、v∈[-1,1],恒有|f(u)-f(v)|≤|u-v|,则以下结论正确的为(  )
A.存在u,v∈[-1,1],使|f(u)-f(v)|>1B.存在x0∈[-1,1],使f(x0)>1-x0
C.存在x0∈[-1,1],使f(x0)<x0-1D.对任意x∈[-1,1],有f(x)≤1-x

分析 由题意可得:?x∈[-1,1],|f(x)-f(1)|≤|x-1|,化简即可得出.

解答 解:由题意可得:?x∈[-1,1],
|f(x)-f(1)|≤|x-1|,∴|f(x)|≤1-x,因此f(x)≤1-x,
故选:D.

点评 本题考查了函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某地政府为了对房地产市场进行调控决策,统计部门对外来人口和当地人口进行了买房的心理预期调研,用简单随机抽样的方法抽取了110人进行统计,得到如下列联表(不全):
买房不买房犹豫总计
外来人口(单位:人)5101530
当地人口(单位:人)20105080
总计252065110
已知样本中外来人口数与当地人口数之比为3:8.
(1)补全上述列联表;
(2)从参与调研的外来人口中用分层抽样方法抽取6人,进一步统计外来人口的某项收入指标,若一个买房人的指标记为3,一个犹豫人的指标记为2,一个不买房人的指标记为1,现在从这6人中再随机选取3人,用X表示这3人指标之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=5,向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ=60°,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数y=$\sqrt{x-1}$的定义域为M,集合N={y|y=x2,x∈R},则M∩N=(  )
A.B.NC.(1,+∞)D.M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}中,a1=1,an+1=an+2n-1,则a6=(  )
A.31B.32C.63D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线m,n和平面α,β,则下列四个命题中正确的是(  )
A.若α⊥β,m?β,则m⊥αB.若m⊥α,n∥α,则m⊥nC.若m∥α,n∥m,则n∥αD.若m∥α,m∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.曲线y=x(3lnx+1)在点(1,1)处的切线的斜率为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}满足an+1(an-1-an)=an-1(an-an+1),若a1=2,a2=1,则a20=(  )
A.$\frac{1}{{{2^{10}}}}$B.$\frac{1}{2^9}$C.$\frac{2}{21}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y+2≥0}\\{y≥0}\end{array}}\right.$,则z=3x+2y的最大值为(  )
A.4B.6C.8D.9

查看答案和解析>>

同步练习册答案