精英家教网 > 高中数学 > 题目详情
13.设函数y=$\sqrt{x-1}$的定义域为M,集合N={y|y=x2,x∈R},则M∩N=(  )
A.B.NC.(1,+∞)D.M

分析 运用函数的定义域的求法和值域的求法,化简集合M,N,再由交集的定义即可得到所求集合.

解答 解:函数y=$\sqrt{x-1}$的定义域为M,
可得M={x|x-1≥0}={x|x≥1}=[1,+∞),
集合N={y|y=x2,x∈R}={y|y≥0}=[0,+∞),
则M∩N=[1,+∞)∩[0,+∞)=[1,+∞)=M,
故选:D.

点评 本题考查考查集合的交集的运算,注意运用函数的定义域的求法和值域的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若实数x,y,满足3x-4y-5=0,则$\sqrt{{x^2}+{y^2}}$的最小值是(  )
A.$\sqrt{5}$B.5C.$\frac{\sqrt{5}}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,两个非共线向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为θ,M,N分别为OA与OB的中点,点C在直线MN上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则x2+y2的最小值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给定两个长度为1的平面向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,它们的夹角为90°.点C在以O为圆心的圆弧$\widehat{AB}$上变动,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,则xy的范围是(  )
A.(0,1)B.[0,1]C.$({0,\frac{1}{2}})$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,BC=1,角C=120°,cosA=$\frac{2}{3}$,则AB=$\frac{3\sqrt{15}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设y=f(x)为定义在[-1,1]上的函数,且满足条件:①f(-1)=f(1)=0,②对任意u、v∈[-1,1],恒有|f(u)-f(v)|≤|u-v|,则以下结论正确的为(  )
A.存在u,v∈[-1,1],使|f(u)-f(v)|>1B.存在x0∈[-1,1],使f(x0)>1-x0
C.存在x0∈[-1,1],使f(x0)<x0-1D.对任意x∈[-1,1],有f(x)≤1-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|1≤x≤3},B={x|log2x>1}.
(1)分别求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值集合.

查看答案和解析>>

同步练习册答案