分析 ①根据数列{an}是公差为1的等差数列,写出an的通项公式,求出bn,计算它的前4项和T4;
②根据数列{an}是公比为k+1的等比数列,写出通项公式an,计算数列{bn}的前n项和Tn.
解答 解:①∵数列{an}满足${a_1}=\frac{1}{k}$,k≥2,k∈N*,
[an]表示不超过an的最大整数bn=[an],数列{bn}的前n项和为Tn.
数列{an}是公差为1的等差数列,
∴${a}_{n}=\frac{1}{k}+(n-1)×1$=n+$\frac{1}{k}-1$,
bn=[an]=n-1,
∴T4=b1+b2+b3+b4=0+1+2+3=6.
②∵数列{an}是公比为k+1的等比数列,
a1=$\frac{1}{k}$,k≥2,
∴an=$\frac{1}{k}$•(k+1)n-1
=$\frac{1}{k}$•(kn-1+${C}_{n-1}^{1}$•kn-2+${C}_{n-1}^{2}$•kn-3+…+${C}_{n-1}^{k-1}$•k+${C}_{n-1}^{n-1}$),且bn=[an],
∴数列{bn}的前n项和为:
Tn=0+1+(k+2)+(k2+3k+3)+…+(kn-2+${C}_{n-1}^{1}$•kn-3+${C}_{n-1}^{2}$•kn-4+…+${C}_{n-1}^{k-1}$)
=(1+2+3+…+n-1)+(k+${C}_{3}^{2}$k+${C}_{4}^{2}$k+…+${C}_{n-1}^{2}$k)+(k2+${C}_{4}^{3}$k2+${C}_{5}^{3}$k2+…+${C}_{n-1}^{3}$k2)+…+kn-2
=$\frac{n(n-1)}{2}$+${C}_{n}^{3}$k+${C}_{n}^{4}$k2+…+${C}_{n}^{n}$kn-2
=${C}_{n}^{2}$+${C}_{n}^{3}$k+${C}_{n}^{4}$k2+…+${C}_{n}^{n}$kn-2
=$\frac{1}{{k}^{2}}$(${C}_{n}^{2}$k2+${C}_{n}^{3}$k3+${C}_{n}^{4}$k4+…+${C}_{n}^{n}$kn)
=$\frac{1}{{k}^{2}}$[(1+k)n-nk-1].
故答案为:①6,②$\frac{1}{{k}^{2}}$[(1+k)n-nk-1].
点评 本题考查了等差与等比数列的应用问题,也考查了推理与计算能力,是难题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{31}{128}(2+\sqrt{2})a$ | B. | $\frac{31}{64}(2+\sqrt{2})a$ | C. | $(1+\frac{{\sqrt{2}}}{32})a$ | D. | $(1-\frac{{\sqrt{2}}}{32})a$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{AD}$与$\overrightarrow{BC}$ | B. | $\overrightarrow{OA}$与$\overrightarrow{OB}$ | C. | $\overrightarrow{AC}$与$\overrightarrow{BD}$ | D. | $\overrightarrow{EO}$与$\overrightarrow{OF}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com