精英家教网 > 高中数学 > 题目详情
7.函数$y=\sqrt{{x^2}-3x-4}$的单调递增区间是[4,+∞).

分析 由根式内部的代数式大于等于0求出函数的定义域,再求出内函数二次函数的增区间,结合复合函数的单调性可得原函数的增区间.

解答 解:由x2-3x-4≥0,解得x≤-1或x≥4.
则内函数t=x2-3x-4在[4,+∞)上为增函数,
由外函数y=${t}^{\frac{1}{2}}$为其定义域上的增函数,
∴函数$y=\sqrt{{x^2}-3x-4}$的单调递增区间是[4,+∞).
故答案为:[4,+∞).

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求证:$kC_n^k=nC_{n-1}^{k-1}$;
(Ⅱ)在数学上,常用符号来表示算式,如记$\sum_{i=0}^n{a_i}={a_0}+{a_1}+{a_2}+…+{a_n}$,其中i∈N,n∈N*
①若a0,a1,a2,…,an成等差数列,且a0=0,求证:$\sum_{i=0}^n{({a_i}•C_n^i})={a_n}•{2^{n-1}}$;
②若$\sum_{k=1}^{2n}{{{(1+x)}^k}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2n}}{x^{2n}}$,${b_n}=\sum_{i=0}^n{{a_{2i}}}$,记${d_n}=1+\sum_{i=1}^n{[{{(-1)}^i}}•{b_i}•C_n^i]$,且不等式t•(dn-1)≤bn恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,BC=1,角C=120°,cosA=$\frac{2}{3}$,则AB=$\frac{3\sqrt{15}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.有下列命题:
①复数z满足|z-1|+|z+1|=2则复数z所对应点Z的轨迹是一个椭圆;
②f′(x0)=$\lim_{h→0}\frac{{f({x_0}+h)-f({x_0})}}{h}=\lim_{x→{x_0}}\frac{{f(x)-f({x_0})}}{{x-{x_0}}}$=$\lim_{h→0}\frac{{f({x_0})-f({x_0}-h)}}{h}$;
③将5封信投入3个邮筒,不同的投法共有53种;
④已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是4和3;
⑤若a>0,b>0,f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为9
其中正确的有:②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图在直角梯形ABCP中,AP∥BC,AB=BC=$\frac{1}{2}$AP=2,D是AP的中点,E,G分别为PC,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD,F为线段PD上一动点.当二面角G-EF-D的大小为$\frac{π}{4}$时,求FG与平面PBC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=4x的焦点F,过焦点的直线与抛物线交于A,B两点,则4|FA|+|FB|的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an},那么“对于任意的n∈N*,点Pn(n,an)都在曲线y=3x上”是“数列{an}为等比数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校在平面图为矩形的操场ABCD内进行体操表演,其中AB=40,BC=16,O为AB上一点,且BO=8,线段OC、OD、MN为表演队列所在位置(M,N分别在线段OD、OC上),点P为领队位置,且P到BC、CD的距离均为12,记OM=d,我们知道当△OMN面积最小时观赏效果最好.
(1)当d为何值时,P为队列MN的中点?
(2)怎样安排M的位置才能使观赏效果最好?求出此时d的值.

查看答案和解析>>

同步练习册答案