精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cosxsin(x+
π
3
)-
3
2

(1)用“五点作图法”画出函数f(x)在一个周期内的图象;
(2)求函数f(x)的单调区间;
(3)求函数f(x)取得最大值和最小值时的集合.
考点:五点法作函数y=Asin(ωx+φ)的图象,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:(1)先化简求出函数的解析式,然后列表描点即可用“五点作图法”画出函数f(x)在一个周期内的图象;
(2)令2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,令2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈Z,可解得函数f(x)的单调区间;
(3)令2x+
π
3
=2kπ+
π
2
,k∈Z,2x+
π
3
=2kπ+
2
,k∈Z,从而可求函数f(x)取得最大值和最小值时的集合.
解答: 解:(1)f(x)=2cosxsin(x+
π
3
)-
3
2
=
1
2
sin2x+
3
2
(1+cos2x)-
3
2
=sin(2x+
π
3

列表:…(6分)
x-
π
6
π
12
π
3
12
6
2x+
π
3
0
π
2
π
2
y010-10
描点、连线如图所示.…(12分)

(2)令2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z,可解得kπ-
12
≤x≤kπ+
π
12
,k∈Z,故函数f(x)的单调递增区间是[kπ-
12
,kπ+
π
12
],k∈Z;
令2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈Z,可解得kπ+
π
12
≤x≤kπ+
12
,k∈Z,故函数f(x)的单调递增区间是[kπ+
π
12
,kπ+
12
],k∈Z;
(3)由f(x)max=1,可解得2x+
π
3
=2kπ+
π
2
,k∈Z,从而有x=kπ+
π
12
,k∈Z;
由f(x)min=-1,可解得2x+
π
3
=2kπ+
2
,k∈Z,从而有x=kπ+
12
,k∈Z.
点评:本题主要考查了五点法作函数y=Asin(ωx+φ)的图象,三角函数的图象与性质,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

OP1
=
a
OP2
=
b
P1P
PP2
(λ≠-1)
,则
OP
=(  )
A、
a
b
B、λ
a
+(1-λ)
b
C、λ
a
+
b
D、
1
1+λ
a
+
λ
1+λ
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知PA⊥平面ABC,垂足为A,∠ABC=120°,PA=AB=BC=6,则PC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:
①函数y=(x-2)2+lnx的图象具有“可平行性”;
②定义在(-∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;
③三次函数f(x)=x3-x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=
2
3

④要使得分段函数f(x)=
x+
1
x
(m<x)
ex-1(x<0)
的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是
 
.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
1
2
|x-1|+a|x+2|.当a=1时,f(x)的单调递减区间为
 
;当a=-1时,f(x)的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={x|2≤x≤10,且x∈N}.集合A={3,4,6,8},B={3,5,8,9},那么集合{2,7,10}=(  )
A、A∪B
B、A∩B
C、(∁UA)∩(∁UB)
D、(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,则“a>2”是“a2>4”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

右图为函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分图象,M、N是它与x轴的两个交点,D、C分别为它的最高点和最低点,E(0,1)是线段MD的中点,且
MD
MN
=
π2
8
,则函数f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E、F分别为PD、AC上的动点,且
DE
DP
=
AF
AC
=λ,(0<λ<1).
(Ⅰ)若λ=
1
2
,求证:EF∥平面PAB;
(Ⅱ)求三棱锥E-FCD体积最大值.

查看答案和解析>>

同步练习册答案