精英家教网 > 高中数学 > 题目详情
已知PA⊥平面ABC,垂足为A,∠ABC=120°,PA=AB=BC=6,则PC=
 
考点:直线与平面垂直的性质
专题:解三角形,空间位置关系与距离
分析:连接PB,PC,由余弦定理可得AC的值,由PA⊥AC,故根据勾股定理可得PC的值.
解答: 解:连接PB,PC,
∵PA=AB=BC=6,
∴由余弦定理可得AC=
AB2+BC2-2AB•BCcos120°
=6
3

∵PA⊥平面ABC,
∴PA⊥AC,
∴PC=
PA2+AC2
=
36+108
=12.
故答案为:12.
点评:本题主要考察了直线与平面垂直的性质,勾股定理的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线2ax+by-2=0(a>0,b>0)被圆x2+y2-2x-4y-4=0截得的弦长为6,m=b+
2
a
,n=a+
1
2b
,则m+n的最小值为.
A、
9
2
B、5
C、
11
2
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数f(x)与g(x)的图象相同的是(  )
A、f(x)=x,g(x)=(
x
2
B、f(x)=x2,g(x)=(x+1)2
C、f(x)=1,g(x)=x0
D、f(x)=|x|,g(x)=
x
-x
(x≥0)
(x<0)

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
1
1+sin2x
+
1
1+cos2x
+
1
2+tan2x
+
1
2+cot2x
=2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(2,1),B(1,-2),C(
3
5
,-
1
5
),动点P(a,b)满足0≤
OP
OA
≤2且0≤
OP
OB
≤2,则点P到点C的距离大于
1
4
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点到一条渐近线的距离等于焦距的
1
4
,则该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2-ax+2a=0的两个根均大于1,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosxsin(x+
π
3
)-
3
2

(1)用“五点作图法”画出函数f(x)在一个周期内的图象;
(2)求函数f(x)的单调区间;
(3)求函数f(x)取得最大值和最小值时的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的
3
16
,设球的半径为R,圆锥底面半径为r.
(1)试确定R与r的关系,并求出较大圆锥与较小圆锥的体积之比;
(2)求出两个圆锥的体积之和与球的体积之比.

查看答案和解析>>

同步练习册答案