精英家教网 > 高中数学 > 题目详情

【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50 名,其中每天玩微信超过6 小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有60%的把握认为“微信控”与”性别“有关?

(2)现从调查的女性用户中按分层抽样的方法选出5 人并从选出的5 人中再随机抽取3 人赠送200 元的护肤品套装,记这3 人中“微信控”的人数为X,试求X 的分布列与数学期望.

参考公式:,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

【答案】(1)没有60%的把握(2)见解析

【解析】试题分析:(1)由列表根据公式计算,对照临界值表即可得出结论;(2)依题意所抽取的位女性中“微信控”有人,得所有可能取值为 ,计算对应的概率,写出的分布列,由期望公式计算数学期望值.

试题解析:(1)由列联表可知,

==≈0.649,

∵0.649<0.708,

∴没有60%的把握认为“微信控”与”性别“有关;

(2)依题意知,所抽取的5位女性中“微信控”有3人,

“非微信控”有2人,

∴X的所有可能取值为1,2,3;

且P(X=1)==,P(X=2)==,P(X=3)==

∴X 的分布列为:

X

1

2

3

P(X)

X的数学期望为EX=1×+2×+3×=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在原点,离心率为 ,右焦点到直线x+y+ =0的距离为2.
(1)求椭圆E的方程;
(2)椭圆下顶点为A,直线y=kx+m(k≠0)与椭圆相交于不同的两点M、N,当|AM|=|AN|时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人6次测试的成绩(单位:分)记录如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用茎叶图表示这两组数据,现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);

(2)若将频率视为概率,对运动员甲在今后三次测试成绩进行预测,记这三次成绩高于85分的次数为,求的分布列和数学期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线C1 ( t 为参数),曲线C2 (r>0,θ为参数).

(1)当r=1时,求C 1 与C2的交点坐标;

(2)点P 为曲线 C2上一动点,当r=时,求点P 到直线C1距离最大时点P 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为R,函数 的定义域为M,则RM为(
A.(2,+∞)
B.(﹣∞,2)
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且FA=FC.

(Ⅰ)求证:AC⊥平面BDEF;

(Ⅱ)求证:FC∥平面EAD;

(Ⅲ)求二面角A﹣FC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,

续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

随机调查了该险种的400名续保人在一年内的出险情况,得到如下统计表:

出险次数

0

1

2

3

4

频数

120

100

60

60

40

20

A为事件:“一续保人本年度的保费不高于基本保费”.的估计值;

(Ⅱ)B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的190%”.

的估计值;

(III)求续保人本年度的平均保费估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的是(
A.y= 与y=x+1
B.y=lgx与y= lgx2
C.y= ﹣1与y=x﹣1
D.y=x与y=logaax(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2+log3x,x∈[1,9],求函数y=[f(x)]2+f(x2)的值域.

查看答案和解析>>

同步练习册答案