已知定义在区间(0,+∞)上的函数f(x)满足f(
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断f(x)的单调性;
(3)若f(3)=-1,解不等式f(|x|)<-2.
(1)0
(2)函数f(x)在区间(0,+∞)上是减函数
(3){x|x>9或x<-9}
【解析】【解析】
(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.
(2)任取x1,x2∈(0,+∞),且x1>x2,则
>1.
由于当x>1时,f(x)<0,所以f(
)<0,即f(x1)-f(x2)<0,
因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是减函数.
(3)令x1=9,x2=3,由f(
)=f(x1)-f(x2),得f(
)=f(9)-f(3),
而f(3)=-1,所以f(9)=-2.
由于函数f(x)在区间(0,+∞)上是减函数,
所以f(|x|)<f(9),即|x|>9,解得x>9或x<-9,
因此原不等式的解集为{x|x>9或x<-9}.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:解答题
已知f(x)=x2+ax+3-a,若当x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:填空题
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;
②x=-4为函数y=f(x)图象的一条对称轴;
③函数y=f(x)在[8,10]上单调递增;
④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.
以上命题中所有正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题
已知函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+m(m为常数),则f(-1)的值为( )
A.-3 B.-1 C.1 D.3
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:填空题
如果函数f(x)=ax2-3x+4在区间(-∞,6)上单调递减,则实数a的取值范围是______.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-1函数的概念、定义域和值域(解析版) 题型:解答题
设函数f(x)=
,g(x)=f(x)-ax,x∈[1,3],其中a∈R,记函数g(x)的最大值与最小值的差为h(a).
(1)求函数h(a)的解析式;
(2)画出函数y=h(x)的图象并指出h(x)的最小值.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:选择题
已知函数f(x)=1+x-
+
-
+…+
,则下列结论正确的是( )
A.f(x)在(0,1)上恰有一个零点
B.f(x)在(0,1)上恰有两个零点
C.f(x)在(-1,0)上恰有一个零点
D.f(x)在(-1,0)上恰有两个零点
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题
设曲线y=sinx上任一点(x,y)处的切线斜率为g(x),则函数y=x2g(x)的部分图象可以为( )
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com