精英家教网 > 高中数学 > 题目详情

已知f(x)=x2+ax+3-a,若当x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.

 

-7≤a≤2.

【解析】【解析】
f(x)=x2+ax+3-a=(x+)2-+3-a.

①当-<-2,即a>4时,f(x)min=f(-2)=7-3a≥0,

∴a≤,又a>4,

故此时a不存在.

②当-2≤-≤2,即-4≤a≤4时,f(x)min=f(-)=3-a-≥0,

∴a2+4a-12≤0.

∴-6≤a≤2.

又-4≤a≤4,∴-4≤a≤2.

③当->2,即a<-4时,f(x)min=f(2)=7+a≥0,

∴a≥-7.

又a<-4,故-7≤a<-4.

综上得-7≤a≤2.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-9函数模型及其应用(解析版) 题型:选择题

某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-R)万件,要使附加税不少于128万元,则R的取值范围是(  )

A.[4,8] B.[6,10] C.[4%,8%] D.[6%,100%]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-6对数与对数函数(解析版) 题型:解答题

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,求出a的取值范围;如果不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-5指数及指数函数(解析版) 题型:选择题

函数y=2|x|的定义域为[a,b],值域为[1,16],当a变化时,函数b=g(a)的图象可以是(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:填空题

在平面直角坐标系xOy中,设定点A(a,a),P是函数y= (x>0)图象上一动点.若点P,A之间的最短距离为2,则满足条件的实数a的所有值为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-4二次函数与幂函数(解析版) 题型:选择题

设函数f(x)=-2x2+4x在区间[m,n]上的值域是[-6,2],则m+n的取值所组成的集合为(  )

A.[0,3] B.[0,4] C.[-1,3] D.[1,4]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:选择题

若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是(  )

A.(-1,0) B.(-∞,0)∪(1,2)

C.(1,2) D.(0,2)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-2函数的单调性与最值(解析版) 题型:解答题

已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)<0.

(1)求f(1)的值;

(2)判断f(x)的单调性;

(3)若f(3)=-1,解不等式f(|x|)<-2.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:选择题

函数y=x4-4x+3在区间[-2,3]上的最小值为(  )

A.72 B.36 C.12 D.0

 

查看答案和解析>>

同步练习册答案