分析 (Ⅰ) 利用已知条件求出数列的公差,然后求数列{an}的通项公式;
(Ⅱ) 化简${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}+{a_n}$,通过裂项消项法求数列{bn}的前n项和Sn.
解答 (本小题满分12分)
解:(Ⅰ)∵等差数列{an}的首项a1=1,公差d>0,a2=1+d,a5=1+4d,a14=1+13d,…(3分)
且a2,a5,a14成等比数列,∴(1+4d)2=(1+d)(1+13d),…(4分)
即d=2,…(5分)
∴an=1+2(n-1)=2n-1.…(6分)
(Ⅱ)∵${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}+{a_n}=\frac{1}{(2n-1)(2n+1)}+(2n-1)$,…(7分)
∴${S_n}=\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]+\frac{n(1+2n-1)}{2}$…(10分)
=$\frac{n}{2n+1}+{n^2}$.…(12分)
点评 本题考查数列的通项公式的求法,数列求和的简单方法的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M-(M-N)=N | B. | (M-N)+(N-M)=∅ | C. | (M+N)-M=N | D. | (M-N)∩(N-M)=∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com