精英家教网 > 高中数学 > 题目详情

在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2、c=3,cosB=数学公式. 
(1)求b的值;  
(2)求sinC的值.

解:(1)由余弦定理b2=a2+c2-2accosB,且a=2,c=3,cosB=,(2分)
代入得:b2=22+32-2×2×3×=10,(4分)
∴b=.(6分)
(2)由余弦定理得:cosC===,(10分)
∵C是△ABC的内角,
∴sinC==.(12分)
分析:(1)由a,c以及cosB的值,利用余弦定理即可求出b的值;
(2)利用余弦定理表示出cosC,把a,b,c的值代入求出cosC的值,由C的范围,利用同角三角函数间的基本关系求出sinC的值即可.
点评:此题的解题思想是利用余弦定理建立已知量与未知量间的联系,同时要求学生灵活运用同角三角函数间的基本关系化简求值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案