精英家教网 > 高中数学 > 题目详情
1.在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD,当棱锥A′-PBCD的体积最大时,PA的长为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.1

分析 令PA=x(0<x<2),求出体积表达式,利用导数确定函数的单调性,求出函数的最大值.

解答 解:令PA=x(0<x<2),则A′P=PD=x.BP=2-x,因为A′P⊥PD
且平面A′PD⊥平面PBCD,故A′P⊥平面PBCD,
所以${V}_{{A}^{′}-PBCD}=\frac{1}{3}Sh=\frac{1}{6}(2-x)(2+x)x=\frac{1}{6}(4x-{x}^{3})$,
令f(x)=$\frac{1}{6}(4x-{x}^{3})$,由f′(x)=$\frac{1}{6}(4-3{x}^{2})\;=0$得x=$\frac{2\sqrt{3}}{3}$,
当x∈(0,$\frac{2\sqrt{3}}{3}$)时,f′(x)>0,f(x)单调递增,
当x∈($\frac{2\sqrt{3}}{3}$,2)时,f′(x)<0,f(x)单调递减,
所以,当x=$\frac{2\sqrt{3}}{3}$时,f(x)取得最大值,
即:体积最大时,PA=$\frac{2\sqrt{3}}{3}$.
故选:A

点评 本题主要考查四棱锥体积的计算,以及函数与导数的综合,根据条件求出体积的表达式,利用导数研究函数的最值是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥面ABCD,∠ABC=90°,△ABC≌△ADC,PA=AC=2AB=2,E是线段PC的中点.
(I)求证:DE∥面PAB;
(Ⅱ)求二面角D-CP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若m,n是实数,且m>n,则下列结论成立的是(  )
A.lg(m-n)>0B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.$\frac{n}{m}$<1D.m2>n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-x≥6,命题q:|x-2|≤3;若p∧q与?q同时为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.(1+a+a2)(a-$\frac{1}{a}}$)6的展开式中的常数项为(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随着电子商务的发展,人们的购物习惯正在改变,基本上所有的需求都可以通过网络购物解决.小韩是位网购达人,每次购买商品成功后都会对电商的商品和服务进行评价.现对其近年的200次成功交易进行评价统计,统计结果如表所示.
对服务好评对服务不满意合计
对商品好评8040120
对商品不满意701080
合计15050200
(1)是否有99.9%的把握认为商品好评与服务好评有关?请说明理由;
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行观察,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A=[0,4),集合B={x|x2-2x≥3,x∈N},则A∩B=(  )
A.{x|3≤x<4}B.{x|0≤x<3}C.{3}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=log2(5-2x),x∈N},B={x|3x(x-2)≤1},则A∩B等于(  )
A.{x|0≤x≤2}B.{x|1≤x<2}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.四棱锥P-ABCD的底面ABCD是矩形,侧面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,则该四棱锥P-ABCD外接球的体积为(  )
A.$\frac{32π}{3}$B.$\frac{20\sqrt{5}π}{3}$C.8$\sqrt{6}$πD.36π

查看答案和解析>>

同步练习册答案