精英家教网 > 高中数学 > 题目详情
5.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,xf′(x)-f(x)<0,若$a=\frac{f(e)}{e}$,$b=\frac{f(ln2)}{ln2}$,$c=\frac{f(-3)}{-3}$,则a,b,c的大小关系正确的是(  )
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

分析 构造函数g(x)=$\frac{f(x)}{x}$,g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,函数g(x)单调递减,再根据函数的奇偶性得到g(x)为偶函数,即可判断.

解答 解:构造函数g(x)=$\frac{f(x)}{x}$,
∴g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵xf′(x)-f(x)<0,
∴g′(x)<0,
∴函数g(x)在(0,+∞)单调递减.
∵函数f(x)为奇函数,
∴g(x)=$\frac{f(x)}{x}$是偶函数,
∴c=$\frac{f(-3)}{-3}$=g(-3)=g(3),
∵a=$\frac{f(e)}{e}$=g(e),b=$\frac{f(ln2)}{ln2}$=g(ln2),
∴g(3)<g(e)<g(ln2),
∴c<a<b,
故选:D.

点评 本题考查了通过构造函数利用导数研究函数的单调性比较大小,考查了推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若集合C={m|函数y=x2+(m-2)x+2为偶函数},集合D={y|y=$\frac{x}{x-1}$,2≤x≤3}.则C∩D=(  )
A.ϕB.{1}C.{2}D.[$\frac{3}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x>1”是“x(x-1)>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=$Asin(ωx-\frac{π}{6})+1$,(A>0,ω>0)的最大值为2,其周期为π,
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ)设α∈$(0,\frac{π}{2})$,则f(2α)=2,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在单调递减的等比数列{an}中,若a3=1,${a_2}+{a_4}=\frac{5}{2}$,则a1等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在R上定义运算?:x?y=x(1-y),若对?x>2,不等式(x-a)?x≤a+2都成立,则实数a的取值范围是a≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(1,-2),则($\overrightarrow{a}$+2$\overrightarrow{b}$)•$\overrightarrow{a}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数x,y满足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤k\end{array}\right.$,若z=x+y的最小值是-3,则z的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数$f(x)={x^2}+\frac{2a}{x}(x≠0,a∈R)$
(1)判断并证明函数f(x)的奇偶性;
(2)若a>0,求函数f(x)的单调区间;
(3)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

同步练习册答案