| A. | a<b<c | B. | b<c<a | C. | a<c<b | D. | c<a<b |
分析 构造函数g(x)=$\frac{f(x)}{x}$,g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,函数g(x)单调递减,再根据函数的奇偶性得到g(x)为偶函数,即可判断.
解答 解:构造函数g(x)=$\frac{f(x)}{x}$,
∴g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵xf′(x)-f(x)<0,
∴g′(x)<0,
∴函数g(x)在(0,+∞)单调递减.
∵函数f(x)为奇函数,
∴g(x)=$\frac{f(x)}{x}$是偶函数,
∴c=$\frac{f(-3)}{-3}$=g(-3)=g(3),
∵a=$\frac{f(e)}{e}$=g(e),b=$\frac{f(ln2)}{ln2}$=g(ln2),
∴g(3)<g(e)<g(ln2),
∴c<a<b,
故选:D.
点评 本题考查了通过构造函数利用导数研究函数的单调性比较大小,考查了推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ϕ | B. | {1} | C. | {2} | D. | [$\frac{3}{2}$,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com