分析 设等比数列的公比为q,由求和公式可得$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=1,$\frac{\frac{1}{{a}_{1}}(1-\frac{1}{{q}^{6}})}{1-\frac{1}{q}}$=10,两式相除化简可得a12•q5=$\frac{1}{10}$.而a1•a2•a3•a4•a5•a6=(a12•q5)3,代值计算可得.
解答 解:设等比数列的公比为q,则q>0,
∵a1+a2+a3+a4+a5+a6=1,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{6}}$=10,故q≠1,
∴$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=1,$\frac{\frac{1}{{a}_{1}}(1-\frac{1}{{q}^{6}})}{1-\frac{1}{q}}$=10,
两式相除可得$\frac{{{a}_{1}}^{2}(1-{q}^{6})(1-\frac{1}{q})}{(1-q)(1-\frac{1}{{q}^{6}})}$=$\frac{1}{10}$
化简可得a12•q5=$\frac{1}{10}$.
∴a1•a2•a3•a4•a5•a6=a16•q15=(a12•q5)3=$\frac{1}{1000}$
故答案为:$\frac{1}{1000}$.
点评 本题考查等比数列的通项公式和求和公式,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 48 | B. | 24 | C. | 36 | D. | 25 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com