精英家教网 > 高中数学 > 题目详情
1.求函数y=2tan(-2x+$\frac{π}{3}$)的单调区间.并比较tan1,tan2,tan3的大小.

分析 函数即y=-2tan(2x-$\frac{π}{3}$),再利用正切函数的单调性求得此函数的单调区间.根据tan2=tan(2-π),tan3=tan(3-π),函数y=tanx在(-$\frac{π}{2}$,$\frac{π}{2}$)上为增函数,从而得出结论.

解答 解:对于函数y=2tan(-2x+$\frac{π}{3}$)=-2tan(2x-$\frac{π}{3}$),由kπ-$\frac{π}{2}$<2x-$\frac{π}{3}$<kπ+$\frac{π}{2}$,k∈z,
求得$\frac{kπ}{2}$-$\frac{π}{12}$<x<$\frac{kπ}{2}$+$\frac{5π}{12}$,故函数的减区间为($\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{5π}{12}$ ),k∈z.
由于tan2=tan(2-π),tan3=tan(3-π),
函数y=tanx在(-$\frac{π}{2}$,$\frac{π}{2}$)上为增函数,-$\frac{π}{2}$<2-π<3-π<1<$\frac{π}{2}$,
∴tan(2-π)<tan(3-π)<tan1,即 tan2<tan3<tan1.

点评 本题主要考查正切函数的单调性,利用正切函数的单调性比较及格正切值的大小,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sin(ωx+φ+$\frac{π}{6}$)(ω>0,0<φ≤$\frac{π}{2}$)的部分图象如图所示,则φ的值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=cos$\frac{π}{3}$sin2x-sin$\frac{π}{3}$cos2x(x∈R).
(1)若x∈(0,$\frac{π}{2}$),求函数f(x)的最大值;
(2)在△ABC中,若A<B,f(A)=f(B)=$\frac{1}{2}$,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:${C}_{n}^{0}$+${C}_{n}^{2}$+${C}_{n}^{4}$+…+${C}_{n}^{n}$=2n-1(n为偶数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)为偶函数,当x≥0时,f(x)=m(|x-2|-1)(m>0),若函数y=f[f(x)]恰有4个零点,则m的取值范围为(  )
A.(0,1)B.(1,3)C.(1,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+$\frac{{e}^{x}}{e}$-a(x-1),其中a∈R,e=2.71828…是自然对数的底数.
(Ⅰ)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(Ⅱ)证明:当a≤2时,函数f(x)是(1,+∞)内的增函数;
(Ⅲ)当a=3时,判断函数F(x)=f(x)-1的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等比数列{an}的各项都为正数,若a1+a2+a3+a4+a5+a6=1,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{5}}$+$\frac{1}{{a}_{6}}$=10,则a1•a2•a3•a4•a5•a6=$\frac{1}{1000}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R集合A={x|log2(x-1)},B={y|y=2x},则(CUA)∩B=(  )
A.(-∞,0)B.(0,1]C.(-∞,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)及内部面积为S=πab,A1,A2是长轴的两个顶点,B1,B2是短轴的两个顶点,在椭圆上或椭圆内部随机取一点 P,给出下列命题:
①△PA1A2为钝角三角形的概率为1;
②△PB1B2为钝角三角形的概率为$\frac{b}{a}$;
③△PA1A2为钝角三角形的概率为$\frac{b}{a}$; 
④△PB1B2为锐角三角形的概率为$\frac{a-b}{a}$.
其中正确的命题有①②④.(填上你认为所有正确的命题序号)

查看答案和解析>>

同步练习册答案