精英家教网 > 高中数学 > 题目详情
12.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)及内部面积为S=πab,A1,A2是长轴的两个顶点,B1,B2是短轴的两个顶点,在椭圆上或椭圆内部随机取一点 P,给出下列命题:
①△PA1A2为钝角三角形的概率为1;
②△PB1B2为钝角三角形的概率为$\frac{b}{a}$;
③△PA1A2为钝角三角形的概率为$\frac{b}{a}$; 
④△PB1B2为锐角三角形的概率为$\frac{a-b}{a}$.
其中正确的命题有①②④.(填上你认为所有正确的命题序号)

分析 分别以短轴两个顶点为直径的两个端点作圆O,以长轴两个顶点为直径的两个端点作圆O′,利用几何概型概率的计算公式,数形结合即得结论.

解答 解:如图,以短轴两个顶点为直径的两个端点作圆O,
则圆O的面积为:πb2
易得当点P位于圆O内(含边界)时,△PB1B2为钝角三角形,
∴△PB1B2为钝角三角形的概率为:$\frac{π{b}^{2}}{πab}$=$\frac{b}{a}$,
当点P位于圆O外、椭圆内(含边界)时,△PB1B2为锐角三角形,
∴△PB1B2为锐角三角形的概率为:1-$\frac{π{b}^{2}}{πab}$=1-$\frac{b}{a}$=$\frac{a-b}{a}$,
以长轴两个顶点为直径的两个端点作圆O′,
则在椭圆上或椭圆内部随机取一点P,△PA1A2为钝角三角形,
∴△PA1A2为钝角三角形的概率为1,
故答案为:①②④.

点评 本题以椭圆为载体,考查几何概型概率的计算,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求函数y=2tan(-2x+$\frac{π}{3}$)的单调区间.并比较tan1,tan2,tan3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.分别以一个直角三角形的斜边,两直角边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,画出它们的三视图和直观图,并探讨它们体积之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.下表是某单位在2014年1-5月份用水量(单位:百吨)的一组数据:
月份x12345
用水量y2.5344.55.2
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0.05,视为“预测可靠”,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(2)从这5个月中任取2个月的用水量,求所取2个月的用水灵之和不超过7(单位:百吨)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.经过椭圆x2+2y2=2的一个焦点作倾斜角为45°的直线l,交椭圆于M,N两点,设O为坐标原点,则$\overrightarrow{OM}$•$\overrightarrow{ON}$等于(  )
A.-3B.±$\frac{1}{3}$C.-$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知两点F1(-1,0),F2(1,0),点P在以F1,F2为焦点的椭圆C,且|PF1|,|F1F2|,|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m(|k|≤1)(m>0)与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,当|F1M|+|F2N|最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知椭圆$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1的两个焦点为F1,F2,P为椭圆上一点,且PF1⊥PF2,则|PF1|•|PF2|的值为(  )
A.48B.24C.36D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.b=-1是直线y=x+b过抛物线y2=4x焦点的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知log142=a,用a表示${log_{\sqrt{2}}}$7.
(2)已知sin(3π+α)=2sin($\frac{3π}{2}$+α),求$\frac{sinα-4cosα}{5sinα+2cosα}$的值.

查看答案和解析>>

同步练习册答案