精英家教网 > 高中数学 > 题目详情
9.证明:${C}_{n}^{0}$+${C}_{n}^{2}$+${C}_{n}^{4}$+…+${C}_{n}^{n}$=2n-1(n为偶数)

分析 利用(1+1)n和(1-1)n的展开式,相加可得.

解答 证明:因为$(1+1)^{n}={C}_{n}^{0}+{C}_{n}^{1}+…+{C}_{n}^{n}={2}^{n}$①
$(1-1)^{n}={C}_{n}^{0}-{C}_{n}^{1}+{C}_{n}^{2}+…+{C}_{n}^{n}=0$②
①+②得2(${C}_{n}^{0}+{C}_{n}^{2}+{C}_{n}^{4}+…+{C}_{n}^{n}$)=2n
所以${C}_{n}^{0}$+${C}_{n}^{2}$+${C}_{n}^{4}$+…+${C}_{n}^{n}$=2n-1(n为偶数).

点评 本题考查了二项式定理的运用证明组合数公式;解答本题的关键是对二项式的字母赋值然后等价变形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知点P(m,n)在椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上,则直线mx+ny+1=0与椭圆x2+y2=$\frac{1}{3}$的位置关系为(  )
A.相交B.相切C.相离D.相交或相切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\frac{|sinx|}{x}$-k在(O,+∞)上恰有两个不同的零点x1、x2(x1<x2),给出下列4个结论:
①tan(x1+$\frac{π}{4}$)=$\frac{1+{x}_{1}}{1-{x}_{1}}$;
②tan(x1+$\frac{π}{4}$)=$\frac{1-{x}_{1}}{1+{x}_{1}}$;
③tan(x2+$\frac{π}{4}$)=$\frac{1+{x}_{2}}{1-{x}_{2}}$;
④tan(x2+$\frac{π}{4}$)=$\frac{1-{x}_{2}}{1+{x}_{2}}$.
其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{bn}通项公式bn=log2$\frac{2n+2}{2n+1}$,求前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点F1、F2与双曲线4x2-$\frac{4}{3}$y2=1的两焦点重合,抛物线x2=2py上的点($\sqrt{2}$,1)处的切线经过椭圆C的下顶点.
(1)求椭圆C的标准方程;
(2)已知过点F1的两动直线l与m互相垂直,直线l交椭圆C于A、B两点,直线m交椭圆C于D、E两点,问是否存在实常数λ,使得|$\overrightarrow{AB}$|+|$\overrightarrow{DE}$|=λ|$\overrightarrow{AB}$|•|$\overrightarrow{DE}$|恒成立?若存在,请求出λ的值;若不存在,请说明理由;
(3)在(2)的条件下,求四边形ADBE的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,
(1)已知d=3,an=20,Sn=65,求n;
(2)已知a11=-1,求S21
(3)已知an=11-3n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=2tan(-2x+$\frac{π}{3}$)的单调区间.并比较tan1,tan2,tan3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x(m∈R),令F(x)=f(x)+g(x).
(1)若函数f(x)在(0,1)上单调递增,求实数m的取值范围;
(2)若过原点O可作曲线y=f(x)的两条切线,求实数m的取值范围;
(3)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.下表是某单位在2014年1-5月份用水量(单位:百吨)的一组数据:
月份x12345
用水量y2.5344.55.2
(Ⅰ)若由线性回归方程得到的预测数据与实际检验数据的误差不超过0.05,视为“预测可靠”,那么由该单位前4个月的数据中所得到的线性回归方程预测5月份的用水量是否可靠?说明理由;
(2)从这5个月中任取2个月的用水量,求所取2个月的用水灵之和不超过7(单位:百吨)的概率.

查看答案和解析>>

同步练习册答案