已知函数的定义域为,部分对应值如下表:
的导函数的图象如图所示,
则下列关于函数的命题:
① 函数是周期函数;
② 函数在是减函数;
③ 如果当时,的最大值是2,那么的最大值为4;
④ 当时,函数有4个零点。
其中真命题的个数是 ( )
A.4个 | B.3个 | C.2个 | D.1个 |
D
解析试题分析:先由导函数的图象和原函数的关系画出原函数的大致图象,再借助与图象和导函数的图象,对四个命题,一一进行验证,对于假命题采用举反例的方法进行排除即可得到答案. 解:由导函数的图象和原函数的关系得,原函数的大致图象如图:
由图得:①为假命题,[-1,0]与[4,5]上单调性相反,但原函数图象不一定对称.②为真命题.因为在[0,2]上导函数为负,故原函数递减;③为假命题,当t=5时,也满足x∈[-1,t]时,f(x)的最大值是2;④为假命题,当a离1非常接近时,对于第二个图,y=f(x)-a有2个零点,也可以是3个零点.综上得:真命题只有②.故选 D.
考点:导函数和原函数的单调性
点评:本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com