精英家教网 > 高中数学 > 题目详情

如图,三棱锥P-ABC中,PB⊥底面ABC,,PB=BC=CA=4,E为PC的中点,M为AB的中点,点F在PA上,且AF=2FP.
(1)求证:BE⊥平面PAC;
(2)求证:CM∥平面BEF;
(3)求三棱锥F-ABE的体积.

(1)证明:∵PB⊥底面ABC,且AC?底面ABC,∴AC⊥PB …(1分)
由∠BCA=90°,可得AC⊥CB …(2分)
又∵PB∩CB=B,∴AC⊥平面PBC …(3分)
∵BE?平面PBC,∴AC⊥BE …(4分)
∵PB=BC,E为PC中点,∴BE⊥PC …(5分)
∵PC∩AC=C,∴BE⊥平面PAC …(6分)
(2)证明:取AF的中点G,AB的中点M,连接CG,CM,GM,
∵E为PC中点,FA=2FP,∴EF∥CG.…(7分)
∵CG?平面BEF,EF?平面BEF,∴CG∥平面BEF.…(8分)
同理可证:GM∥平面BEF.
又CG∩GM=G,∴平面CMG∥平面BEF.…(9分)
∵CD?平面CDG,∴CD∥平面BEF.…(10分)
(3)解:由(1)可知BE⊥平面PAC
又PB=BC=4,E为PC的中点,∴BE=2
= …(12分)
∴VF-ABE=VB-AEF==
∴三棱锥F-ABE的体积为.…(14分)
分析:(1)利用线面垂直可得线线垂直,进而可得AC⊥平面PBC,即可得线线垂直,再利用线面垂直的判定,即可证得BE⊥平面PAC;
(2)取AF的中点G,AB的中点M,连接CG,CM,GM,利用线线平行证明线面平行,从而可得平面CMG∥平面BEF,利用面面平行的性质,可得线面平行;
(3)证明BE⊥平面PAC,利用等体积转化可求三棱锥F-ABE的体积.
点评:本题考查线面垂直的判定与性质,考查线面平行,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱锥P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB
(Ⅰ)求证:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)如图,三棱锥P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)若M为线段PC上的点,设
|
PM|
|PC
|
,问λ为何值时能使直线PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)如图,三棱锥P-ABC中,侧面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
2

(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)若E为侧棱PB的中点,求直线AE与底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)如图,三棱锥P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,则P-ABC的外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在三棱锥P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
3
,∠PCA=30°.
(1)求证:AB⊥平面PAC. (2)设二面角A-PC-B•的大小为θ•,求tanθ•的值.

查看答案和解析>>

同步练习册答案