精英家教网 > 高中数学 > 题目详情
1.已知{an}为等差数列,公差d>0,a3=7,a4是a1,a13的等比中项.
(1)求数列{an}的通项公式;
(2)设Sn为{an}的前n项和,${b_n}=\frac{{{a_n}{a_{n+1}}}}{S_n}$,求{bn}的前n项和Tn

分析 (1)由a1、a4、a13成等比数列可得关于d的方程,解出d,利用等差数列的通项公式可得结果;
(2)若bn=$4+\frac{3}{2}(\frac{1}{n}-\frac{1}{n+2})$,利用裂项求和即可{bn}的前n项和Tn

解答 解:(1)由a3=7,可得a1+2d=7,
由a1,a4,a13成等比数列,且d>0,可得${a_1}({{a_1}+12d})={({{a_1}+3d})^2}$,
即2a1=3d.
解得a1=3,d=2.
所以数列{an}的通项公式为an=2n+1.
(2)由(1)知,${S_n}=\frac{{n({3+2n+1})}}{2}={n^2}+2n$,
所以${b_n}=\frac{{{a_n}{a_{n+1}}}}{S_n}$=$\frac{{({2n+1})({2n+3})}}{{n({n+2})}}=\frac{{4{n^2}+8n+3}}{{n({n+2})}}$=$4+\frac{3}{{n({n+2})}}$=$4+\frac{3}{2}(\frac{1}{n}-\frac{1}{n+2})$
所以Tn=b1+b2+b3+…+bn=$4n+\frac{3}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n}-\frac{1}{n+2})$=$4n+\frac{3}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$4n+\frac{9}{4}-\frac{3}{2(n+1)}-\frac{3}{2(n+2)}$

点评 该题考查等差数列的通项公式、求和公式,考查裂项求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=$\frac{1}{{\sqrt{{{log}_2}({3x-2})}}}$的定义域为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若m>0,设直线AD、BC的斜率分别为k1、k2,求$\frac{k_1}{k_2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow m=(\sqrt{3}sin\frac{x}{2},-1)$,向量$\overrightarrow n=(cos\frac{x}{2},-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(1)求f(x)的单调减区间;
(2)将函数f(x)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{π}{3}$个单位长度,得到y=g(x)的图象,求函数y=g(x)的解析式及其图象的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=$\left\{\begin{array}{l}{x^3}+e,x≤0\\ \frac{e^x}{x},x>0\end{array}$,则方程f(f(x))=$\frac{e^3}{3}$的根的个数为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,且|$\overrightarrow{b}$|=|$\overrightarrow{a}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=1,则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.
为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展
共享单车人数
4512973
(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;
年龄低于35岁年龄不低于35岁合计
支持
不支持
合计
(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X,求随机变量X的分布列及数学期望.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x、y满足关系$\left\{\begin{array}{l}x+y-2≤0\\ x-y+4≥0\\ y≥1\end{array}\right.$,则|$\sqrt{3}x$-y|的最大值为$3\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:
网购达人非网购达人合计
男性30
女性1230
合计60
若网购金额超过2千元的顾客称为“网购达人”,网购金额不超过2千元的顾客称为“非网购达人”.
( I)根据频率分布直方图估计网友购物金额的平均值;
( II)若抽取的“网购达人”中女性占12人,请根据条件完成上面的2×2列联表,并判断是否有99%的把握认为“网购达人”与性别有关?
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案