精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=12n-n2
(Ⅰ)求数列{an}的通项公式,并证明{an}是等差数列;
(Ⅱ)若cn=12-an,求数列{
1cncn+1
}
的前n项和Tn
分析:(Ⅰ)依题意,可求得an=13-2n,利用等差数列的定义,易证当n∈N*时,an+1-an=-2为定值,从而证得结论;
(Ⅱ)由(Ⅰ)知cn=2n-1,利用裂项法得
1
cncn+1
=
1
2
1
2n-1
-
1
2n+1
),从而可求数列{
1
cncn+1
}的前n项和.
解答:解( I)当n≥2时,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n,
当n=1时,a1=S1=12-1=11适合上式,
∴an=13-2n,
∴当n∈N*时,an+1-an=13-2(n+1)-(13-2n)=-2为定值,
∴数列{an}是等差数列;
( II)∵cn=12-an=12-(13-2n)=2n-1,n∈N*
1
cncn+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
∴Sn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]=
1
2
(1-
1
2n+1
)=
n
2n+1
点评:本题考查数列的求和,着重考查等差关系的确定与裂项法求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案