分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;
(Ⅱ)分离参数,问题转化为求R(x)=$\frac{lnx}{{x}^{2}}$的最大值,解关于导函数的方程,求出函数的单调区间,从而求出函数的最大值即可;
(Ⅲ)由(Ⅱ)知$\frac{lnx}{x^2}≤$$\frac{1}{2e}$,得到$\frac{lnx}{x^4}<$$\frac{1}{2e}$$•\frac{1}{x^2}$,(x≥2),放缩法证明即可.
解答 解:(Ⅰ)∵$h(x)=\frac{lnx}{x}$(x>0)∴$h'(x)=\frac{1-lnx}{x^2}$,
令h'(x)>0,得0<x<e,
故函数$h(x)=\frac{lnx}{x}$的单调递增区间为(0,e)(3分)
(Ⅱ)由$kx≥\frac{lnx}{x},得k≥\frac{lnx}{x^2},令R(x)=\frac{lnx}{x^2}$,
则问题转化为k大于等于R(x)的最大值,
又 $R'(x)=\frac{1-2lnx}{x^3}$(6分)
令 $R'(x)=0,x=\sqrt{e}$
当x在区间(0,+∞)内变化时,R'(x)、R(x)变化情况如表:
| x | (0,$\sqrt{e}$) | $\sqrt{e}$ | ($\sqrt{e}$,+∞) |
| R'(x) | + | 0 | - |
| R(x) | ↗ | $\frac{1}{2e}$ | ↘ |
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 非优秀 | 总计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 合计 | 100 |
| p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com