分析 (Ⅰ)推导出AA1⊥平面ABCD,从而BD⊥AA1,由四边形ABCD为菱形,得BD⊥AC,由此能证明C1F⊥BD.
(Ⅱ)以O为原点,OD为x轴,OC为y轴,OE为z轴,建立空间直角坐标系,利用向量法能求出二面角C-DE-C1的余弦值.
解答 证明:(Ⅰ)∵矩形A1ACC1⊥平面ABCD,矩形A1ACC1∩平面ABCD=AC,AA1⊥AC,
∴AA1⊥平面ABCD,
又BD?平面ABCD,
∴BD⊥AA1,
∵四边形ABCD为菱形,
∴BD⊥AC,
∵AA1∩AC=A,
∴BD⊥平面ACC1A1,
∵C1F?平面ACC1A1,
∴C1F⊥BD.
解:(Ⅱ)以O为原点,OD为x轴,OC为y轴,OE为z轴,建立空间直角坐标系,
C(0,1,0),D($\sqrt{3}$,0,0),E(0,0,3),C1(0,1,3),
$\overrightarrow{DE}$=(-$\sqrt{3}$,0,3),$\overrightarrow{DC}$=(-$\sqrt{3}$,1,0),$\overrightarrow{D{C}_{1}}$=(-$\sqrt{3}$,1,3),
设平面CDE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=-\sqrt{3}x+3z=0}\\{\overrightarrow{n}•\overrightarrow{DC}=-\sqrt{3}x+y=0}\end{array}\right.$,
取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,3,1),
设平面DEC1的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DE}=-\sqrt{3}a+3c=0}\\{\overrightarrow{m}•\overrightarrow{D{C}_{1}}=-\sqrt{3}a+b+3c=0}\end{array}\right.$,
取a=$\sqrt{3}$,得$\overrightarrow{m}$=($\sqrt{3},0,1$),
设二面角C-DE-C1的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{4}•\sqrt{13}}$=$\frac{2\sqrt{13}}{13}$.
∴二面角C-DE-C1的余弦值为$\frac{2\sqrt{13}}{13}$.
点评 本题考查异面直线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | (-7,3) | B. | (-5,2) | C. | (2,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | [1,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com