精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=xlnx-ax2+a不存在最值,则实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{2}$]C.[1,+∞)D.[$\frac{1}{2}$,+∞)

分析 问题等价于函数y=lnx与y=2ax-1的图象最多1个交点,当y=lnx和y=2ax-1相切时,设切点是(x0,lnx0),求出a的临界值即可.

解答 解:由题意,f′(x)=lnx+1-2ax
令f′(x)=0,得lnx=2ax-1,
函数f(x)不存在最值,等价于f′(x)=lnx-2ax+1最多1个零点,
等价于函数y=lnx与y=2ax-1的图象最多1个交点,
当y=lnx和y=2ax-1相切时,设切点是(x0,lnx0),
∴$\left\{\begin{array}{l}{l{nx}_{0}=2{ax}_{0}-1}\\{2a=\frac{1}{{x}_{0}}}\end{array}\right.$,解得:a=$\frac{1}{2}$,
故当a=$\frac{1}{2}$时,直线y=2ax-1与y=lnx的图象相切,
故a≥$\frac{1}{2}$时,y=lnx与y=2ax-1的图象最多1个交点.
则实数a的取值范围是[$\frac{1}{2}$,+∞).
故选:D.

点评 本题考查了导数的应用以及函数的最值问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在单位正方体ABCD-A1B1C1D1中,O是B1D1的中点,如图建立空间直角坐标系.
(1)求证:B1C∥平面ODC1
(2)求异面直线B1C与OD夹角的余弦值;
(3)求直线B1C到平面ODC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(I)求证:△ABE∽△ADB,并求AB的长;
(II)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,四边形ABCD为菱形,矩形A1ACC1⊥平面ABCD,且DA=2,AA1=3,∠ADC=$\frac{π}{3}$,E为线段A1C1的中点,F为线段A1A上一点.
(Ⅰ)证明:C1F⊥BD;
(Ⅱ)求二面角C-DE-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-{x}^{2},x>0}\\{ax{e}^{x},x≤0}\end{array}\right.$,其中a>0.
(1)求曲线g(x)=f(x)+lnx在点(1,g(1))处的切线方程;
(2)若f(x)+f(a)≥0对x∈(-∞,0]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a∈R,函数f(x)=ax2-lnx,g(x)=ex-ax.
(1)当a=7时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)•g(x)>0对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ex-ax2-2x+b(e为自然对数的底数,a,b∈R).
(Ⅰ)设f′(x)为f(x)的导函数,证明:当a>0时,f′(x)的最小值小于0;
(Ⅱ)若a<0,f(x)>0恒成立,求符合条件的最小整数b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-2ax+b(a,b∈R),记M是|f(x)|在区间[0,1]上的最大值.
(I)当b=0且M=2时,求a的值;
(Ⅱ)若M≤$\frac{1}{2}$,证明0≤a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,P是曲线C1:ρ=12sinθ上的动点,Q是曲线C2:ρsin(θ+$\frac{π}{4}$)=-10上的动点.
(1)请判断C1,C2分别是什么图形;
(2)求|PQ|的最小值.

查看答案和解析>>

同步练习册答案