分析 (1)求出g(x)的导数,计算g′(1),g(1),求出切线方程即可;
(2)问题转化为即a2-a≥-xex对x∈(-∞,0]恒成立,令h(x)=-xex,x∈(-∞,0],根据函数的单调性求出a的范围即可.
解答 解:(1)g(x)=f(x)+lnx=x3-x2+lnx,(x>0),
g′(x)=3x2-2x+$\frac{1}{x}$,g′(1)=2,g(1)=0,
∴切线方程是:y=2(x-1),即2x-y-2=0;
(2)∵函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-{x}^{2},x>0}\\{ax{e}^{x},x≤0}\end{array}\right.$,其中a>0,
∴若f(x)+f(a)≥0对x∈(-∞,0]恒成立,
即xex+a2-a≥0对x∈(-∞,0]恒成立,
即a2-a≥-xex对x∈(-∞,0]恒成立,
令h(x)=-xex,x∈(-∞,0],
h′(x)=-ex(x+1),
令h′(x)>0,解得:x<-1,令h′(x)<0,解得:-1<x≤0,
∴h(x)在(-∞,-1)递增,在(-1,0]递减,
∴h(x)max=h(-1)=$\frac{1}{e}$,
∴a2-a≥$\frac{1}{e}$,
解得:a≥$\frac{1}{2}$(1+$\frac{\sqrt{e(4+e)}}{e}$).
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,$\frac{1}{2}$] | C. | [1,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{5}{4}$ | B. | -$\frac{4}{5}$ | C. | $\frac{4}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com