精英家教网 > 高中数学 > 题目详情
20.我们知道,任意两个连续的正整数的积一定能被2整除,任意三个连续的正整数的积一定能被6整除,那么,任意五个连续的正整数的积一定能被哪一个正整数整除呢?以此为依据你认为:当n为大于2的整数时,n5-5n3+4n能否被120整除?为什么?

分析 任意五个连续的正整数的积一定能被120整除,原式可化为n(n2-1)(n2-4)=(n+2)(n+1)n(n-1)(n-2),即可得出结论.

解答 解:连续5个整数,必然有一个能被5整除,必然有一个能被2整除,还有另一个能被4整除,必然有一个能被3整除,即2×3×4×5=120,所以,任意五个连续的正整数的积一定能被120整除.
∵n5-5n3+4n=n(n4-5n2+4)
=n(n2-1)(n2-4)
=n(n-1)(n+1)(n-2)(n+2)
=(n+2)(n+1)n(n-1)(n-2),
∴n5-5n3+4n能被120整除.

点评 本题主要考查了进行简单的合情推理,涉及多项式的因式分解和运用综合法证明问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-ax,g(x)=b+aln(x-1),存在实数 a(a≥1),使y=f(x)的图象与y=g(x)的图象无公共点,则实数b的取值范围为(-∞,$\frac{3}{4}$+ln2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.自然数k满足如下性质:在1,2,…,2012中取出k个不同的数,使其中任意两个数之和不被这两个数之差整除,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a(x-1)(ex-a),(常数a∈R且a≠0).
(Ⅰ)若函f(x)在(0,f(0))处的切线与直线y=-4x+1平行,求a的值;
(Ⅱ)若对任意x∈[1,+∞)都有f(x)≥x2-x,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=aex+$\frac{1}{a{e}^{x}}$+b(a>0).
(1)求f(x)在[0,+∞)上的最小值;
(2)设曲线y=f(x)在点(2,f(2))的切线方程为3x-2y=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(I)求证:△ABE∽△ADB,并求AB的长;
(II)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若复数z满足$\frac{i+z}{i-z}$=|$\sqrt{3}$+i|,则z的实部与虚部之和为(  )
A.0B.$\frac{1}{3}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-{x}^{2},x>0}\\{ax{e}^{x},x≤0}\end{array}\right.$,其中a>0.
(1)求曲线g(x)=f(x)+lnx在点(1,g(1))处的切线方程;
(2)若f(x)+f(a)≥0对x∈(-∞,0]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知|x-1|≤1,|y-2|≤1.
(1)求y的取值范围;
(2)若对任意实数x,y,|x-2y+2a-1|≤3成立,求实数a的值.

查看答案和解析>>

同步练习册答案