精英家教网 > 高中数学 > 题目详情
11.自然数k满足如下性质:在1,2,…,2012中取出k个不同的数,使其中任意两个数之和不被这两个数之差整除,求k的最大值.

分析 因为要最多,所以从1开始取,首先可以肯定两个数间隔为1或者2都不可以,这个题的答案就是间隔为3取数,1、4、7、…、2012 一共671个数.

解答 解:因为要最多,所以从1开始取,首先可以肯定两个数间隔为1或者2都不可以,这个题的答案就是间隔为3取数,1、4、7、…、2012 一共671个数.
下面进行证明.因为取得数都是除以3余1,所以任意两个数3a+1,3b+1,那么两个数的和3(a+b)+2,肯定不能被3整除.再看两个数的差3(a-b)肯定是3的倍数,如果想要和可以整除差,那么和必须可以整除3,上面已经证明任意两个数的和不能整除3,所以任意两个数的和肯定不能整除两个数的差所以这题的答案是每隔3取一个数,当然取的数不能整除3.也可以2、5、8、…、2009 这样比1 4 7 的少,所以最多的取法是1、4、7、…、2012共671个,
所以k的最大值为671.

点评 本题考查合情推理,考查学生分析解决问题的能力,确定间隔为3取数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.极坐标系中,圆ρ=1上的点到直线ρcosθ+ρsinθ=2的距离最大值为(  )
A.$\sqrt{2}$B.$\sqrt{2}+1$C.$\sqrt{2}-1$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设曲线x2+y2-2x+4y-4=0关于直线x-2ay+11=0对称,则直线x-2ay+11=0的倾斜角为(  )
A.arctan(-6)B.arctan(-$\frac{1}{6}$)C.π-arctan6D.π-arctan$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,圆C1:(x-3)2+y2=9,以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C2的圆心的极坐标为($\sqrt{2}$,$\frac{π}{4}}$),半径为1.
(1)求圆C1的极坐标方程;
(2)设圆C1与圆C2交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)将下列极坐标方程化为直角坐标方程:ρ(2cosθ+5sinθ)-4=0;
(2)将下列参数方程化为普通方程:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=4sinφ}\end{array}}\right.$(φ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+5,当x=-2时,f(x)有极值为13.
(1)求实数a,b的值;
(2)求函数f(x)在[-3,0]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足x+y-3=0,则$\sqrt{{{(x-2)}^2}+{{(y+1)}^2}}$的最小值是(  )
A.$\sqrt{2}$B.2C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.我们知道,任意两个连续的正整数的积一定能被2整除,任意三个连续的正整数的积一定能被6整除,那么,任意五个连续的正整数的积一定能被哪一个正整数整除呢?以此为依据你认为:当n为大于2的整数时,n5-5n3+4n能否被120整除?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC的三个顶点在椭圆4x2+5y2=6上,其中A,B两点关于原点O对称,设直线AC的斜率为k1,直线BC的斜率为k2.则k1k2的值为(  )
A.-$\frac{5}{4}$B.-$\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案