分析 (1)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;
(2)通过讨论a的范围求出f(x)在[1,e]的最大值,求出g(x)在[e,e2]的最小值,问题转化为f(x)max>g(x)min即可,得到关于a的不等式组,解出即可.
解答 解:(1)∵f(x)=x+$\frac{{{a^{\;}}}}{x}$,(x≠0),
∴f′(x)=1-$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}-a}{{x}^{2}}$,
①a≤0时,f′(x)>0,f(x)在(-∞,0),(0,+∞)递增;
②a>0时,令f′(x)>0,解得:x>$\sqrt{a}$或x<-$\sqrt{a}$,
令f′(x)<0,解得:-$\sqrt{a}$<x<$\sqrt{a}$且x≠0,
∴f(x)在(-∞,-$\sqrt{a}$)递增,在(-$\sqrt{a}$,0),(0,$\sqrt{a}$)递减,在($\sqrt{a}$,+∞)递增;
(2)由(1)得:
①a≤1时,f(x)在[1,e]递增,
∴f(x)在[1,e]的最大值是f(e)=e+$\frac{a}{e}$,
②1<a<e时,f(x)在[1,a)递减,在(a,e]递增,
∴f(x)的最大值是f(1)或f(e),
而f(1)=1+a<f(e)=e+$\frac{a}{e}$,
∴f(x)在[1,e]的最大值是e+$\frac{a}{e}$,
③a≥e时,f(x)在[1,e]递减,
∴f(x)在[1,e]的最大值是f(1)=1+a,
而g(x)=x+lnx,g′(x)=1+$\frac{1}{x}$>0,
∴g(x)在[e,e2]递增,g(x)的最小值是g(e)=1+e,
若存在x1∈[1,e],x2∈[e,e2],使得f(x1)≥g(x2)成立,
只需f(x)max>g(x)min即可,
∴$\left\{\begin{array}{l}{a<e}\\{e+\frac{a}{e}>1+e}\end{array}\right.$或$\left\{\begin{array}{l}{a≥e}\\{1+a≥1+e}\end{array}\right.$,
解得:a≥e.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com