精英家教网 > 高中数学 > 题目详情
14.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=8.

分析 由题意可得:2n=256,解得n.

解答 解:由题意可得:2n=256,解得n=8.
故答案为:8.

点评 本题考查了二项式定理的性质及其应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数$y={({\frac{1}{3}})^x}$的图象与函数y=-log3x的图象关于直线y=x对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)={(6-x-{x^2})^{\frac{3}{2}}}$的单调递减区间为(  )
A.$[{-\frac{1}{2},2}]$B.$[{-3,-\frac{1}{2}}]$C.$[-\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a=({\frac{1}{2},sinα})$,$\overrightarrow b=({sinα,1})$,若$\overrightarrow a∥\overrightarrow b$,则锐角α为(  )
A.30°B.60°C.45°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=ln({x-2})-\frac{x^2}{2a}$(a为常数,a≠0).
(Ⅰ)当a=1时,求函数f(x)在点(3,f(3))的切线方程
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在x0处取得极值,且${x_0}∉[{e+2,{e^3}+2}]$,而f(x)≥0在[e+2,e3+2]上恒成立,求实数a的取值范围.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x>-1},则下列选项正确的是(  )
A.0⊆AB.{0}⊆AC.∅∈AD.{0}∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},{bn}与函数f(x),{an}是首项a1=15,公差d≠0的等差数列,{bn}满足:bn=f(an).
(1)若a4,a7,a8成等比数列,求d的值;
(2)若d=2,f(x)=|x-21|,求{bn}的前n项和Sn
(3)若d=-1,f(x)=ex,Tn=b1•b2•b3…bn,问n为何值时,Tn的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,点(an,an+1)在直线y=x+2上,且首项a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,请写出适合条件Tn≤Sn的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=logax(a>0且a≠1).
(1)若f(3a+4)≥f(5a),求实数a的取值范围;
(2)当a=$\frac{1}{2}$时,设g(x)=f(x)-3x+4,判断g(x)在(1,2)上零点的个数并证明:对任意λ>0,都存在μ>0,使得g(x)<0在x∈(λμ,+∞)上恒成立.

查看答案和解析>>

同步练习册答案