精英家教网 > 高中数学 > 题目详情
甲、乙两人参加一次射击游戏,规则规定,每射击一次,命中目标得2分,未命中目标得0分.已知甲、乙两人射击的命中率分别为
3
5
和p,且甲、乙两人各射击一次所得分数之和为2的概率是
9
20
.假设甲、乙两人射击是相互独立的,则p的值为(  )
A、
1
4
B、
1
3
C、
2
3
D、
3
4
考点:互斥事件的概率加法公式,相互独立事件的概率乘法公式
专题:概率与统计
分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,由相互独立事件的概率公式可得,可得关于p的方程,解方程即可得答案.
解答: 解:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,
则“甲射击一次,未击中目标”为事件
.
A
,“乙射击一次,未击中目标”为事件
.
B

则P(A)=
3
5
,P(
.
A
)=1-
3
5
=
2
5
,P(B)=P,P(
.
B
)=1-P,
依题意得:
3
5
×(1-p)+
2
5
×p=
9
20

解可得,p=
3
4

故选:D.
点评:本题考查相互独立事件的概率计算,关键是根据相互独立事件概率得到关于p的方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若实数x,y满足
x-y+1≤0
x>0
y≤2
,则目标函数z=x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x2f′(1),则f′(2)=(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=4x的焦点为F,过F且斜率为1的直线交抛物线于A、B两点,动点P在曲线y2=-4x(y≥0)上,则△ABP的面积的最小值为(  )
A、1
B、6
C、2
2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
m
n
其中,
m
=(2cosx,1),
n
=(cosx,
3
sin2x),求f(x)的最小正周期及单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x),g(x)的导函数为g′(x)
(Ⅰ)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(Ⅱ)若g′(-1)=0,求y=g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a2=8,前10项和S10=185.
(1)求数列{an}的通项公式an
(2)若从数列{an}中依次取出2,4,6,8,…2n项按照原来的顺序排成一个新的数列,求新数列的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,且M,N关于直线x-y-1=0对称,若P是圆x2+y2+kx=0上的动点,则△PAB面积的最大值是(  )
A、3-
2
B、4
C、3+
2
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

一直线过点P(-5,-4),求:
(1)与两坐标轴围成的三角形面积为5,求此直线方程.
(2)过点P,且与原点的距离等于5的直线方程.

查看答案和解析>>

同步练习册答案