精英家教网 > 高中数学 > 题目详情
若抛物线y2=4x的焦点为F,过F且斜率为1的直线交抛物线于A、B两点,动点P在曲线y2=-4x(y≥0)上,则△ABP的面积的最小值为(  )
A、1
B、6
C、2
2
D、4
考点:抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:先根据抛物线方程求得抛物线的焦点坐标,进而根据点斜式求得直线的方程与抛物线方程联立,消去y,根据韦达定理求得x1+x2=的值,进而根据抛物线的定义可知|AB|=x1+x2+p,求出原点到直线的距离,求得答案.
解答: 解:抛物线焦点为(1,0)
则直线方程为y=x-1,代入抛物线方程得x2-6x+1=0
∴x1+x2=6
根据抛物线的定义可知|AB|=x1+x2+p=6+2=8,
∵原点到直线的距离为
1
2

∴△PAB的面积的最小值为
1
2
×8×
1
2
=2
2

故选:C.
点评:本题主要考查了抛物线的简单性质,考查△ABC的面积的最小值.解题的关键是灵活利用了抛物线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=xekx(k≠0)和函数g(x)=x3+ax-b.
(Ⅰ)曲线y=f(x)在点(0,f(0))处的切线与曲线y=g(x)相切于点(1,g(1)),求a,b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)在区间[-1,1]内单调递增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题p:曲线
x2
a-2
-
y2
6-a
=1为双曲线,命题q:函数f(x)=(4-a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1-x2
+
2
1+|x|
是(  )
A、奇函数
B、偶函数
C、既是奇函数又是偶函数
D、非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-3x+2≤0},B={y|y=x2-2x+a},C={x|x2-ax-4≤0}.命题 p:A∩B≠∅,命题q:A⊆C.若命题p∧q为真命题,则a的范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为 a正三角形ABC的边AB、AC上分别取D、E两点,使沿线段DE折叠三角形时,顶点A正好落在边BC上,在这种情况下,若要使AD最小,求AD:AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人参加一次射击游戏,规则规定,每射击一次,命中目标得2分,未命中目标得0分.已知甲、乙两人射击的命中率分别为
3
5
和p,且甲、乙两人各射击一次所得分数之和为2的概率是
9
20
.假设甲、乙两人射击是相互独立的,则p的值为(  )
A、
1
4
B、
1
3
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈[0,4],则曲线(m-1)x2+(3-m)y2=(m-1)(3-m)表示焦点在于y轴上的椭圆的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an+1=1-
1
4an
,bn=
2
2an-1
,其中n∈N*
(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(2)设cn=
2an
(n+1)2
,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案