精英家教网 > 高中数学 > 题目详情
已知定义域为[0,1]的函数f(x)同时满足以下三个条件:
①对任意的x∈[0,1],总有f(x)≥0; 
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立,并且称f(x)为“友谊函数”,
请解答下列各题:
(1)若已知f(x)为“友谊函数”,求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?并给出理由.
(3)已知f(x)为“友谊函数”,且 0≤x1<x2≤1,求证:f(x1)≤f(x2).
分析:(1)直接取x1=x2=0利用f(x1+x2)≥f(x1)+f(x2)可得:f(0)≤0,再结合已知条件f(0)≥0即可求得f(0)=0;
(2)因为g(x)=2x-1在[0,1]上满足①g(x)≥0;②g(1)=1,所以只须证其满足条件③即可,因为有g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2 x2-1)]=(2x1-1)(2 x2-1)≥0.故成立.
(3)由0≤x1<x2≤1,则0<x2-x1<1,故有f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1),即得结论成立.
解答:解:(1)取x1=x2=0
得f(0)≥f(0)+f(0),
又由f(0)≥0,得f(0)=0
(2)解:显然g(x)=2x-1在[0,1]上满足①g(x)≥0;②g(1)=1
若x1≥0,x2≥0,且x1+x2≤1,
则有g(x1+x2)-[g(x1)+g(x2)]=2x1+x2-1-[(2x1-1)+(2 x2-1)]=(2x1-1)(2 x2-1)≥0
故g(x)=2x-1满足条件①﹑②﹑③
所以g(x)=2x-1为友谊函数.
(3)解:因为0≤x1<x2≤1,则0<x2-x1<1,
所以f(x2)=f(x2-x1+x1)≥f(x2-x1)+f(x1)≥f(x1
故有f(x1)≤f(x2).
点评:本题主要是在新定义下对抽象函数进行考查,在做关于新定义的题目时,一定要先研究定义,在理解定义的基础上再做题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f(x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)求f(x)的最大值;
(3)若对于任意x∈[0,1],总有4f2(x)-4(2-a)f(x)+5-4a≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f(x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则有f (x1+x2)≥f (x1)+f (x2).
(1)试求f(0)的值;
(2)试求函数f(x)的最大值;
(3)试证明:当x∈(
1
2n
1
2n-1
]
,n∈N+时,f(x)<2x.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数同时满足以下三个条件:①对任意x∈[0,1],总有f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立.
(1)求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否同时适合①②③?并予以证明;
(3)假定存在x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为[0,1]的函数f (x)同时满足:
①对于任意的x∈[0,1],总有f(x)≥0;
②f(1)=1;
③若0≤x1≤1,0≤x2≤1,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2).
(1)试求f(0)的值;
(2)试求函数f (x)的最大值;
(3)试证明:当x∈(
1
4
1
2
]
时,f(x)<2x.

查看答案和解析>>

同步练习册答案