精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求证:BF∥平面ADE;
(Ⅱ)在线段CF上求一点G,使锐二面角B﹣EG﹣D的余弦值为

【答案】证明:(Ⅰ)∵在矩形ABCD中BC∥AD,
AD平面ADE
BC平面ADE,
∴BC∥平面ADE,
同理CF∥平面ADE,
又∵BC∩CF=C,
∴平面BCF∥平面ADE,
而BF平面BCF,
∴BF∥平面ADE.
(Ⅱ)∵CD⊥AD,CD⊥DE
∴∠ADE即为二面角A﹣CD﹣F的平面角,
∴∠ADE=60°
又∵AD∩DE=D,
∴CD⊥平面ADE,
又∵CD平面CDEF
∴平面CDEF⊥平面ADE,
作AO⊥DE于O,则AO⊥平面CDEF.
连结CE,
在△CEF中由余弦定理



易求得,∠ECF=45°,CD=DE=3,OD=1,OE=2.
以O为原点,以平行于DC的直线为x轴,以直线DE为y轴,建立如图空间直角坐标系O﹣xyz,
,C(3,﹣1,0),E(0,2,0),F(3,5,0),
设G(3,t,0),﹣1≤t≤5,


设平面BEG的一个法向量为
则由



平面DEG的一个法向量

为使锐二面角B﹣EG﹣D的余弦值为
只需
解得
此时
∴G(3, ,0).
即所求的点G为线段CF的靠近C端的四分之一分点.

【解析】(1)利用平面与平面平行的判定定理证明平面BCF∥平面ADE,从而得到BF∥平面ADE.(Ⅱ)利用直线与平面,平面与平面垂直的判定定理证明平面CDEF⊥平面ADE,根据平面与平面垂直的性质定理可知,作AO⊥DE于O,则AO⊥平面CDEF.建立如图所示空间直角坐标系,写出点的坐标,利用平面法向量以及锐二面角B﹣EG﹣D的余弦值确定G点的坐标,从而确定点G的位置.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为.点在椭圆上,直线过坐标原点,若 .

(1)求椭圆的方程;

(2) 设椭圆在点处的切线记为直线,点上的射影分别为,过的垂线交轴于点,试问是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD的四条侧棱长相等,底面ABCD为正方形,M为PB的中点,求证:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求异面直线PD与CM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:BC⊥平面PAB;
(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.

(1)求证:BD⊥A1C;
(2)若E在棱BC1上,且满足DE∥面ABC,求三棱锥E﹣ACC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=ax(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为12,则实数a的值为(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sinx的图象上所有点的横坐标缩小到原来的 (纵坐标不变),再将所得到的图象上所有点向左平移 个单位,所得函数图象的解析式为(
A.y=sin(2x﹣
B.y=sin(2x+
C.y=sin( x+
D.y=sin( x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面 ,且.

(1)若上一点,且,证明:平面平面.

(2)若为棱上一点,且平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD的中心为E(﹣1,0),一边AB所在的直线方程为x+3y﹣5=0,求其它三边所在的直线方程.

查看答案和解析>>

同步练习册答案