【题目】如图,矩形ABCD所在的半平面和直角梯形CDEF所在的半平面成60°的二面角,DE∥CF,CD⊥DE,AD=2, ,CF=6,∠CFE=45°.
(Ⅰ)求证:BF∥平面ADE;
(Ⅱ)在线段CF上求一点G,使锐二面角B﹣EG﹣D的余弦值为 .
【答案】证明:(Ⅰ)∵在矩形ABCD中BC∥AD,
AD平面ADE
BC平面ADE,
∴BC∥平面ADE,
同理CF∥平面ADE,
又∵BC∩CF=C,
∴平面BCF∥平面ADE,
而BF平面BCF,
∴BF∥平面ADE.
(Ⅱ)∵CD⊥AD,CD⊥DE
∴∠ADE即为二面角A﹣CD﹣F的平面角,
∴∠ADE=60°
又∵AD∩DE=D,
∴CD⊥平面ADE,
又∵CD平面CDEF
∴平面CDEF⊥平面ADE,
作AO⊥DE于O,则AO⊥平面CDEF.
连结CE,
在△CEF中由余弦定理
,
即
∴ ,
易求得,∠ECF=45°,CD=DE=3,OD=1,OE=2.
以O为原点,以平行于DC的直线为x轴,以直线DE为y轴,建立如图空间直角坐标系O﹣xyz,
则 ,C(3,﹣1,0),E(0,2,0),F(3,5,0),
设G(3,t,0),﹣1≤t≤5,
则 ,
,
设平面BEG的一个法向量为 ,
则由 ,
得 ,
取 ,
得 .
平面DEG的一个法向量 ,
∴ .
为使锐二面角B﹣EG﹣D的余弦值为 ,
只需 ,
解得 ,
此时 .
∴G(3, ,0).
即所求的点G为线段CF的靠近C端的四分之一分点.
【解析】(1)利用平面与平面平行的判定定理证明平面BCF∥平面ADE,从而得到BF∥平面ADE.(Ⅱ)利用直线与平面,平面与平面垂直的判定定理证明平面CDEF⊥平面ADE,根据平面与平面垂直的性质定理可知,作AO⊥DE于O,则AO⊥平面CDEF.建立如图所示空间直角坐标系,写出点的坐标,利用平面法向量以及锐二面角B﹣EG﹣D的余弦值确定G点的坐标,从而确定点G的位置.
【考点精析】通过灵活运用直线与平面平行的判定,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行即可以解答此题.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右焦点分别为.点在椭圆上,直线过坐标原点,若, .
(1)求椭圆的方程;
(2) 设椭圆在点处的切线记为直线,点在上的射影分别为,过作的垂线交轴于点,试问是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD的四条侧棱长相等,底面ABCD为正方形,M为PB的中点,求证:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求异面直线PD与CM所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,PA⊥AC,AB⊥BC.设D,E分别为PA,AC中点.
(Ⅰ)求证:DE∥平面PBC;
(Ⅱ)求证:BC⊥平面PAB;
(Ⅲ)试问在线段AB上是否存在点F,使得过三点 D,E,F的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.
(1)求证:BD⊥A1C;
(2)若E在棱BC1上,且满足DE∥面ABC,求三棱锥E﹣ACC1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sinx的图象上所有点的横坐标缩小到原来的 (纵坐标不变),再将所得到的图象上所有点向左平移 个单位,所得函数图象的解析式为( )
A.y=sin(2x﹣ )
B.y=sin(2x+ )
C.y=sin( x+ )
D.y=sin( x+ )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com