【题目】已知椭圆
:
(
)的离心率为
,
,
分别是它的左、右焦点,且存在直线
,使
,
关于
的对称点恰好是圆
:
(
,
)的一条直径的两个端点.
(1)求椭圆
的方程;
(2)设直线
与抛物线
相交于
、
两点,射线
、
与椭圆
分别相交于
、
.试探究:是否存在数集
,当且仅当
时,总存在
,使点
在以线段
为直径的圆内?若存在,求出数集
;若不存在,请说明理由.
【答案】(1)
;(2)存在数集
.
【解析】试题分析:(1)由圆
的方程配方得半径为2,由题设知,椭圆的焦距
等于圆
的直径,所以
,又
,可得椭圆方程.
(2)由题可得直线
是线段
的垂直平分线,由
方程与
,联立可得:
,
.又点
在以线段
为直径的圆内即
, ![]()
试题解析:(1)将圆
的方程配方得:
,所以其圆心为
,半径为2,由题设知,椭圆的焦距
等于圆
的直径,所以
,
又
,所以
,从而
,故椭圆
的方程为
.
(2)因为
产于
的对称点恰好是圆
的一条直径的两个端点,所以直线
是线段
的垂直平分线(
是坐标原点),故
方程为
,与
,联立得:
,由其判别式
得
①.
设
,
,则
,
,
从而
,
.
因为
的坐标为
,
所以
,
,
注意到
与
同向,
与
同向,所以
点
在以线段
为直径的圆内
,所以
即![]()
代入整理得
②
当且仅当
即
时,总存在
,使②成立.
又当
时,由韦达定理知方程
的两根均为正数,故使②成立的
,从而满足①.
故存在数集
,当且仅当
时,总存在
使点
在以线段
为直径的圆内.
点晴:本题主要考查直线与圆锥曲线位置关系. 直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及点
在以线段
为直径的圆内
,坐标化求解即可.
科目:高中数学 来源: 题型:
【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
![]()
(1)求证:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为常数
,对任意
,均有
恒成立.下列说法:
①
的周期为
;
②若
为常数)的图像关于直线
对称,则
;
③若
且
,则必有
;
④已知定义在
上的函数
对任意
均有
成立,且当
时,
;又函数
为常数),若存在
使得
成立,则
的取值范围是
.其中说法正确的是____.(填写所有正确结论的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥S—ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,则点A到平面SBC的距离为( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面为矩形,AB=
,BC=1,E,F分别是AB,PC的中点,DE⊥PA.
(1)求证:EF∥平面PAD;
(2)求证:平面PAC⊥平面PDE.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连结PE并延长交AB于点G.
![]()
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,|an+1-an|=pn,n∈N*.
(1)若{an}是递增数列,且a1,2a2,3a3成等差数列,求p的值;
(2)若p=,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·沈阳期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分别为AB、BC的中点,点P在以A为圆心,AD为半径的圆弧
上变动(如图所示).若
=λ
+μ
,其中λ,μ∈R,则2λ-μ的取值范围是______________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已经函数
的定义域为
,设![]()
(1)试确定
的取值范围,使得函数
在
上为单调函数
(2)求证![]()
(3)若不等式
(为
正整数)对任意正实数
恒成立,求
的最大值.(解答过程可参考使用以下数据
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com