精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱台ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求证:BF⊥平面ACFD

(2)求二面角B-AD-F的平面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)由面面垂直性质定理得AC⊥平面BCFE,因此BFAC.再根据平几知识得BFFC.最后根据线面垂直判定定理得结论(2)过点FFQAKQ,由三垂线定理得BQAK.即∠BQF是二面角B-AD-F的平面角.再根据解三角形得二面角B-AD-F的平面角的余弦值

试题解析:(1)证明 延长ADBECF相交于一点K,如图所示.

因为平面BCFE⊥平面ABC,平面BCFE∩平面ABCBC,且ACBC

所以AC⊥平面BCFE,因此BFAC.

又因为EFBCBEEFFC=1,BC=2,所以△BCK为等边三角形,且FCK的中点,则BFCK,且CKACCCKAC都在平面ACFD内,

所以BF⊥平面ACFD.

(2)过点FFQAKQ,连接BQ.

因为BF⊥平面ACFDAK在平面ACFD内,所以BFAK

AK⊥平面BQFBQ在平面BQF内,所以BQAK.

所以∠BQF是二面角B-AD-F的平面角.

在Rt△ACK中,AC=3,CK=2,得FQ.

在Rt△BQF中,FQBF,得cos∠BQF.

所以,二面角B-AD-F的平面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出人,并将这人按年龄分组:第,第,第,第,第,得到的频率分布直方图如图所示.

Ⅰ)求出的值;

Ⅱ)求出这人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

Ⅲ)现在要从年龄较小的第组中用分层抽样的方法抽取人,则第组分别抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线C的焦点在轴上,离心率为,其一个顶点的坐标是(0,1.

Ⅰ)求双曲线C的标准方程;

Ⅱ)若直线与该双曲线交于AB两点,且AB的中点为(2,3),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的图像可由的图像平移得到,对于任意的实数,均有成立,且存在实数,使得为奇函数.

(Ⅰ)求函数的解析式.

(Ⅱ)函数的图像与直线有两个不同的交点,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为aEFGH分别为ABBCCDDA的中点.若沿EFFGGHHE将四角折起,试问能折成一个四棱锥吗?为什么?你从中能得到什么结论?对于圆锥有什么类似的结论?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 上顶点为右焦点为过右顶点作直线且与轴交于点又在直线和椭圆上分别取点和点满足为坐标原点),连接.

1)求的值,并证明直线与圆相切;

(2)判断直线与圆是否相切?若相切,请证明;若不相切,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是

A.ACBE B.EF平面ABCD

C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,已知⊥平面 的中点

(1)求证:

(2)若的中点,点在直线上,且

求证:直线//平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:(1)异面直线是指空间两条既不平行也不相交的直线;(2)若直线上有两点到平面的距离相等,则;(3)若直线与平面内无穷多条直线都垂直,则;(4)两条异面直线中的一条垂直于平面,则另一条必定不垂直于平面.其中正确命题的个数是 ( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案